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SAMENVATTING

Praktische en theoretische resultaten zijn gevonden betreffende

het gebruik van globale ruimte-allocatie voor de instanties van

toegepaste voorkomens van een attribuut.

De praktische resultaten hebben voornamelijk betrekking op de

noodzakelijke en voldoende voorwaarden om tijdens de constructie

van de evaluator te kunnen beslissen of deze de instanties van een

toegepast voorkomen kan toewijzen aan een aantal globale vari-

abelen, stacks en queues. Het testen van deze voorwaarden neemt

polynomiaal veel tijd voor een simple multi-visit evaluator en ex-

ponentieel veel tijd voor een absolutely non-circular evaluator.

De theoretische resultaten hebben betrekking op de gegevens-

structuren die nodig zijn voor de globale ruimte-allocatie van de in-

stanties van toegepaste voorkomens in simple multi-X evaluatoren,

waarbij X ∈ { pass, sweep, visit }. Voor dit doel is de algemene

klasse van basic linear data structures gëıntroduceerd. Deze klasse

van gegevensstructuren kan ook worden gebruikt om de theoretische

mogelijkheden en beperkingen van ruimte-allocatietechnieken in

andere gebieden dan attribuutgrammatica’s te onderzoeken.



SUMMARY

Practical and theoretical results have been found concerning the use

of global storage allocation for the instances of applied occurrences

of an attribute.

The practical results focus on the necessary and sufficient con-

ditions to decide at evaluator construction time whether an evalua-

tor can allocate the instances of an applied occurrence to a number

of global variables, stacks and queues. Checking these conditions

takes polynomial time for a simple multi-visit evaluator and expo-

nential time for an absolutely non-circular evaluator.

The theoretical results are concerned with the data struc-

tures that are required for the global storage allocation of the in-

stances of applied occurrences in simple multi-X evaluators, where

X ∈ { pass, sweep, visit }. For this purpose, the general class of

basic linear data structures is introduced. This class of data struc-

tures can also be used to explore the theoretical possibilities and

limitations of storage allocation techniques in domains other than

attribute grammars.
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Preface

——————−−——————

This booklet completes my investigations on storage allocation for simple

multi-visit evaluators. These investigations started in 1989 after Rieks op den

Akker made me enthusiastic for the topic of storage allocation in attribute

evaluators. At that time variables and stacks were generally considered to

be the only data structures suitable for global storage allocation in attribute

evaluators. Since I suspected that other data structures like queues might

be suitable as well, I started constructing attribute grammars that contained

attributes whose instances could be allocated to queues during evaluation.

When I succeeded in construction such attribute grammars I also noticed

that it would make sense to refine storage allocation to the instances of an

applied occurrence of an attribute.

The work of Engelfriet and De Jong was of great importance to the next

step in my research. Their findings, which had just been published in a report

preceding [10], were surrounded by rumors that they were erroneous. What

may have caused these rumors was presumably that the report made use of a

subtree lifetime set and a context lifetime set. This use of a context lifetime

ix



set was unnecessary (and omitted in [10]) but not wrong. As such, I found no

serious errors and walking in their footsteps I was able to formulate necessary

and sufficient conditions to decide whether a simple multi-visit evaluator can

allocate the instances of an applied occurrence to a global variable, stack or

queue. These conditions were published in [33] and suffer a similar flaw as

the earlier ones of Engelfriet and De Jong.

Meanwhile I got the impression that for simple multi-pass evaluators the

possible data structures for (a, a + 1)-allocating instances of applied occur-

rences were limited to global variables, stacks, and queues. A proof of this

extraordinary fact, however, was not so easy to establish so I welcomed Rieks

op den Akker’s generous offer to assist me. Jointly we worked on the further

formalization of basic linear data structures, a concept that I introduced to

characterize the data structures appropriate for the allocation of instances

of single-use applied occurrences. Engaged in this work (during which I

had studied the revised report [10]) I also worked on conditions to decide

whether a simple multi-visit evaluator can (a, b)-allocate the instances of a

applied occurrence to a global stack or queue. The conditions that I found

could be specialized to simple multi-sweep evaluators so as to make it possi-

ble to analyze what happens if a simple multi-pass evaluator cannot allocate

the instances of a single-use applied occurrence to a global stack or queue.

Thus as one result led to another I got all the evidence necessary to be able

to complete the proof.

All the results found during these investigations were published in a

report, which was unfortunately not well received. The main reason why

this happened was the difficult presentation of this rather detailed material.

Guided by the profound comments and suggestions of Joost Engelfriet, I have

gone to great lengths explaining each new concept while using notations as

x



economically and consistently as possible. In addition, I also undertook new

investigations regarding the relation between the evaluation strategy followed

by an attribute evaluator and the possible global data structures to which

the instances of applied occurrences can be (a, a + 1)-allocated. The new

results found were included in the revised work which is presented here.

This is essentially the genesis of this dissertation. I hope that my work

serves those who are interested in its topic, either by supplying solutions or

by opening the way for new investigations.

Audience

The material contained in this dissertation is intended for readers with

a firm understanding of attribute grammars and evaluators. Since it not

reasonable to expect that a reader gains this knowledge from an introductory

chapter in this dissertation, I did not attempt to make this material accessible

to a broader audience. These readers are advised to first study [2,6,8,9,19,23]

before reading this work.

Conventions

The beginning of structures as theorems, lemmas, and definitions is

marked by the name of the structure optionally followed by a number for

referential purposes. Both the name of the structure and the optional num-

ber are printed in a clearly distinguishable type style (italic or boldface).

The square symbol � is used to mark the ending of these structures.
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CHAPTER ONE

————–

Introduction

——————−−——————

When Knuth proposed attribute grammars in [23] as a way of assigning

meaning to derivation trees of context-free grammars, the computability of

the attribute values in the derivation trees played a mayor role in the accep-

tance of the formalism. To this end, he presented an algorithm (containing

an error corrected a few years later) to decide whether, for every derivation

tree of an attribute grammar, there is a total order in which the attribute

values can be computed.1

Attribute grammars were soon found to be a useful tool for describing

compilers and translators (see also [1,6]) but the implemented attribute eval-

uators computing the attribute values were generally considered to be too

inefficient. Especially the time consumed by these evaluators to determine

the total order in which the attribute values are computed was felt to be

something that could be avoided. Consequently, the main challenge to re-

1 In this context it is interesting to note that four years after correction of the algorithm,

the time complexity of the corrected algorithm was shown to be inherently exponential by

Jazayeri, Ogden, and Rounds [14].
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searchers was the development of attribute evaluators which determined this

total order for all derivation trees at evaluator construction time.

Many such time-efficient attribute evaluators were developed: simple

multi-pass evaluators making a fixed number of left-to-right passes by

Bochmann [4], simple multi-pass evaluators making alternately left-to-right

and right-to-left passes by Jazayeri and Walter [16], and tree-walk evaluators

for absolutely non-circular attribute grammars by Kennedy and Warren [22]

for example. To master the complexity, it was convenient to assume that the

computed attribute values could be stored in the nodes of a derivation tree.

This simple storage allocation technique, which had been applied in most of

the attribute evaluators implemented at that time, was a logical step in the

development of these time-efficient evaluators. However, shortly after the

implementation of the first time-efficient attribute evaluators, storage space

problems began to emerge. Therefore, researchers started to investigate more

efficient storage allocation techniques.

Various storage allocation techniques were proposed to achieve more effi-

cient use of storage space. The basic principle of all these techniques nonethe-

less being the same:

re-use of space occupied by attribute values which are only stored

for the computation of dependent attribute instances.

This re-use of space is obtained by the allocation of the instances of partic-

ular attributes to global variables and stacks (referred to as global storage

allocation), or to variables assigned to certain regions in a derivation tree

(referred to as local storage allocation).

Global storage allocation techniques found in the literature are divisible

into three groups:
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G1: Global storage allocation techniques in which allocation is decided at

evaluator construction time by analyzing the evaluation strategy of a

given time-efficient evaluator. These techniques, found in [10,12,13,15,

18,20,32], are independent of specific derivation trees and leave the

evaluation strategy of the given time-efficient evaluator unchanged.

G2: Global storage allocation techniques in which allocation is decided at

evaluator construction time for a given set of attributes. These tech-

niques, found in [31,34], are independent of specific derivation trees

and construct a time-efficient evaluator with an evaluation strategy

such that the space occupied by attribute instances of the given set of

attributes is re-used.

G3: Global storage allocation techniques in which allocation is decided at

evaluator run time for a particular derivation tree. These techniques,

found in [25,27,30], can be used with all kinds of attribute evaluators

although it increases their time consumption.

Local storage allocation techniques are found in [28] only. The technique

described there decides allocation at evaluator construction time by analyzing

the attribute grammar. It does not depend on specific derivation trees and

can be used with any type of attribute evaluator.

A completely different direction towards storage allocation of computed

attribute values is taken by Pugh in [26]. He proposed function caching

for the re-computation of attributes values in derivation trees which have

undergone incremental changes. When the result of a semantic function call

is computed, the call and the result (i.e., an attribute value) are stored in

the function cache so that the result can be retrieved the next time this call

is made. This implementation not only avoids re-computation of previously
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computed semantic function calls, but it might save storage space as well.

The basic principle by which storage space is saved is stated as:

sharing of space occupied by attribute values which are computed

by identical semantic function calls.

Pugh’s way of allocating attribute values to the function cache is therefore

an advantageous storage allocation strategy for the (re-)computation of the

attribute values in derivation trees that contain lots of isomorphic subtrees.

As such, it was adapted by Vogt, Swierstra, and Kuiper [35] for use with

simple multi-visit attribute evaluators of higher order attribute grammars.

These grammars, introduced in [36] as an extension of attribute grammars,

have derivation trees with lots of isomorphic subtrees so that efficient use of

time and storage space is guaranteed.

However, in comparison with the approach of reusing storage space, shar-

ing storage space does not generally lead to more efficient use of storage

space. After all, arbitrary attribute grammars are not likely to have lots of

derivation trees with isomorphic subtrees, but they are likely to have many

attributes whose values are only stored for the computation of dependent

attribute instances.

This dissertation explores a global storage allocation technique of the first

group, G1, for use with simple multi-visit evaluators. In order to place this

work in the proper context, there follows a literature survey on G1 allocation

techniques. Thereafter the global storage allocation technique examined in

this dissertation will be discussed in detail.

The first G1 global storage allocation technique was introduced in 1978

by Saarinen [32]. In trying to reduce the run time space consumption of
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absolutely non-circular attribute evaluators, he classified some attributes as

temporary and allocated their instances to a single global stack. This clas-

sification, however, does not detect all possible attributes whose instances

could be allocated to the global stack. Improving it requires a more thor-

ough analysis at evaluator construction time, which is rather difficult (the

order in which absolutely non-circular attribute evaluators compute attribute

instances, determined at evaluator construction time, depend on the deriva-

tion trees to be evaluated).

A year later, Ganzinger [13] introduced another G1 global storage allo-

cation technique. He proposed to allocate the instances of particular at-

tributes to global variables so that storage space is re-used and copy opera-

tions are eliminated (when the instances of attributes α and β are allocated

to the same global variable, copy operations involved with semantic rules

(α, p, j) = (β, p, k) can be eliminated as they only copy the value of the global

variable to itself). Sufficient conditions were given to decide whether the in-

stances of particular attributes can be allocated to global variables and it

was shown that finding an allocation that optimizes the elimination of copy

operations is NP-complete. His conditions can be applied with all types of

time efficient evaluators for which the so-called minimal LAST sets can be

computed. Ganzinger mentions that their constructability has not been fully

investigated but that they are very easy to compute for simple multi-visit

evaluators and some subclasses. Further details were not provided.

In 1981, Yazayeri and Pozefsky [15] applied the technique of Saarinen

to simple multi-pass evaluators by classifying certain attributes as one-pass

and allocating their instances to a single global stack. Additionally, they

considered the allocation of the instances of multi-pass attributes. Amongst

other techniques a G1 allocation technique was proposed which assumes an
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“attribute area” where storage space is allocated and freed by a simple multi-

pass evaluator in the following manner:

— Just before visiting a node n, all multi-pass attribute instances of node n,

that are computed during this visit, are allocated to the attribute area.

— After visiting a node n, all multi-pass attribute instances of node n, that

are no longer needed for the computation of other instances, are freed from

the attribute area.

This simple G1 allocation technique has two disadvantages. The first is that

the address of each instance within the attribute area must be stored in

the derivation tree in order to be able to access it. This disadvantage was

overcome by restricting the use of this technique to instances of multi-pass

attributes with large storage space requirements where the space savings are

worth the costs of storing addresses. The second and main disadvantage that

was not overcome, however, is that the attribute area is not a data structure

tailored to the order in which instances are allocated and freed. This causes

the attribute area to become fragmented, which increases the storage space

requirements of the attribute area and, ultimately, of the attribute evaluator.

Farrow and Yellin [12] compared in 1986 the efficiency of various storage

optimizations applied by two compiler generator systems. These systems

both used G1 allocation techniques to generate simple multi-visit evaluators

where the instances of certain attributes are allocated to global variables and

stacks. The most important findings of the comparison with regards to G1

allocation techniques were:

— A more thorough analysis on the order in which attribute instances are

computed is needed at evaluator construction time to allocate more attribute

instances to global variables and stacks. In particular, it was suggested to

compute information to determine whether, during a visit to a node, an
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instance of a given attribute can be computed or used for the computation

of dependent attribute instances.

— Combining allocations to eliminate copy operations and minimize the

number of global variables and stacks needed is generally not so effective.

The time savings of eliminated copy operations is hardly noticeable and,

since the storage overhead for using a global variable or a stack is quite

small, the space savings of minimizing their number is also quite small. The

only situation identified in which combining allocations is really beneficial is

the one where copy operations are eliminated that avoid pushing a value on a

stack that is already on its top. This situation prevents stacks from growing

too large and is therefore recognized as an effective storage optimization, all

be it one of lower importance for an attribute storage allocation strategy. The

reason for this ranking [12, page 415] is that it is more effective to optimize

the number of attribute instances allocated to global variables and stacks.

One year after the publication of the findings of Farrow and Yellin, the

first steps towards a more thorough storage allocation analysis at evaluator

construction time were made by Kastens in [20]. In this paper, context-free

grammars were constructed from the visit-sequences of a simple multi-visit

evaluator to describe the sequences in which it would allocate and free the

instances of a set of attributes. Conditions on the language of such grammars

were then used to decide whether a simple multi-visit evaluator can allocate

the instances of a set of attributes to a global variable or a stack. Both

the construction of a grammar for a set of attributes as well as the check

whether its language satisfies the conditions can be done in polynomial time.

The main disadvantage of the grammars of Kastens is that their language

may contain more sentences than that which is induced by the simple multi-

visit evaluator so that he decide sufficient conditions only.
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Engelfriet and De Jong [10] took in 1990 the direction suggested by Far-

row and Yellin with respect to the computation of information for storage

allocation analysis in simple multi-visit evaluators. They presented a poly-

nomial time algorithm to determine, for any node, all possible distinct visits

in which an instance of a specified attribute can be computed and used (for

the computation of a dependent attribute instance). With this, and some

additional information, necessary and sufficient conditions could be given to

decide whether a simple multi-visit evaluator can allocate the instances of

an attribute to a global variable or stack. Checking these conditions takes

polynomial time.

The last work that must be mentioned in this literature survey on G1 al-

location techniques is that of Julié and Parigot [18]. Their paper, published

in 1990, also considers space optimization in simple multi-visit evaluators.

It is of interest because it presents context-free grammars which allow more

efficient computation of the information that Engelfriet and De Jong used

for storage allocation analysis. However, aside from the provision of a de-

tailed complexity analysis of the time savings, this work needs to be revised.

The use of the grammar of contexts and visits GCV is superfluous: the be-

haviour of a simple multi-visit evaluator in a subtree does not depend on its

context (see also [10, Lemma 2]).

One purpose of the work now described is to develop a G1 allocation tech-

nique for use with simple multi-visit evaluators that improves those above in

two aspects: firstly, it must decide global storage allocation for the instances

of an applied occurrence of an attribute (in a particular production), and

secondly, it must consider queues in addition to stacks and global variables

as a possible data structure for global storage allocation.

The reason for studying global storage allocation for the instances of an
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applied occurrence of an attribute can be explained using Figure 1 which

shows a part of an (attributed) derivation tree. The leftmost instance of

the synthesized attribute s of the nonterminal X is an instance of a defined

occurrence of some production p2 (that is, an instance of an attribute whose

value is defined by a semantic rule associated with p2) whereas it is an in-

stance of an applied occurrence of production p1 : Y → XX. Although the

Figure 1. A part of a derivation tree.

instances of attribute s of X in this tree are instances of the same attribute,

they are instances of distinct applied occurrences in p1. In a given tree, the

instances of a particular applied occurrence of an attribute form a subset of

all instances of that attribute in that tree. Consequently, the instances of the

applied occurrence can always be allocated to a data structure D if all the

instances of the attribute can be allocated to D. Conversely, the fact that the

instances of the attribute cannot be allocated to some data structure D does

not necessarily imply that the instances of a particular applied occurrence
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cannot be allocated to this data structure. Therefore, it is conceivable that

less instances will have to be allocated to the nodes of the tree if storage

allocation is used for the instances of an applied occurrence, and indeed, it

will be shown that this can happen. The adaptation of a simple multi-visit

evaluator to allocate the instances of an applied occurrence is straightforward

and requires little extra space.

The decision to consider additionally queues for the global storage allo-

cation of instances of applied occurrences raises two questions of interest:

(1) Are queues suitable as data structures for attribute evaluators?

(2) Are any other data structures appropriate for global storage allocation

in attribute evaluators?

The answer to the first question will be shown to be affirmative. In fact, the

results indicate that the use of a queue is as suitable as a stack in certain

cases. The answer to the second question will also be shown to be affirmative.

Firstly, by exhibition of another data structure suitable for storage allocation

of an applied occurrence by a simple multi-sweep evaluator, and secondly, by

theorems concerning this quest.

In this dissertation, a distinction will be drawn between single-use and

multi-use applied occurrences. A single-use applied occurrence is an attribute

occurrence on which exactly one defined occurrence depends. The term

multi-use shall be used to stress the fact that an applied occurrence may

not necessarily be a single-use applied occurrence.

Consideration is given initially to the simpler case of global storage allo-

cation for single-use applied occurrences. First of all it will be shown that,

for a given simple multi-sweep evaluator, it is decidable in polynomial time
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whether it can allocate the instances of a single-use applied occurrence to

a global variable, stack, or queue such that it is applicable for any deriva-

tion tree. Next, the data structures required for the global storage alloca-

tion of single-use applied occurrences in simple multi-X evaluators, where

X ∈ { pass, sweep, visit }, will be identified. In order to establish this result,

the class of basic linear data structures is introduced. This class which is

designed to be the most general class of data structures appropriate for the

global storage allocation of single-use applied occurrences, can also be used

to explore the theoretical possibilities and limitations of storage allocation in

fields of research other than attribute grammars. Particular instances of this

class of basic linear data structures are stacks and queues in which a stored

value cannot be accessed more than once.

The results observed for the global storage allocation of single-use applied

occurrences are carried over to multi-use applied occurrences using the idea

of reallocation. After each use of an attribute instance of a multi-use applied

occurrence, this instance can be reallocated (that is, removed from its current

data structure and stored on another data structure). In this way, a concep-

tual distinction can be made between different single-use storage items; one

for each data structure on which an instance of a multi-use applied occur-

rence is stored. Each single-use storage item, in turn, can be shown to be

an instance of a single-use applied occurrence in a specifically constructed

attribute grammar. This observation forms the crux of the generalization to

multi-use applied occurrences. Using Engelfriet and De Jong’s results [10],

the decidability result is also generalized to simple multi-visit evaluators: it

will be shown that independent of specific derivation trees it is decidable in

polynomial time whether a given simple multi-visit evaluator can allocate the

instances of a multi-use applied occurrence to a number of global variables,
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stacks, and queues. To realize this generalization, some additional notations

and notions are introduced.

The remainder of this dissertation is organized as follows. Chapter 2

presents definitions of the different types of evaluators which are considered.

Chapter 3 discusses global storage allocation for single-use applied occur-

rences. This discussion leads to the introduction of basic linear data struc-

tures. Chapter 4 examines global storage allocation for multi-use applied

occurrences, and generalizes all the results obtained in Chapter 3. Chapter 5

considers the implementation aspects of the allocation technique. An im-

plementation is described and illustrated by means of an example. Finally,

Chapter 6 summarizes the main results of the work and presents a number

of conclusions. In addition, a number of problems are identified as a starting

point for continued research.
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CHAPTER TWO

————–

Attribute Grammars and Evaluators

——————−−——————

This chapter provides definitions of the basic concepts and notations that will

be used throughout this dissertation. In addition, an example is presented

to enable the reader to become familiar with the concepts and notations

which are introduced. This example will be continued and expanded in the

successive chapters.

The set of integers { i |m ≤ i ≤ n } is denoted by [m,n]. The empty

string is denoted by the Greek symbol ε. The set of all strings, including ε,

on some set V is denoted by V ∗.

An attribute grammar as presented in [23] consists of an underlying

context-free grammar augmented with attributes and semantic rules defining

these attributes. The precise definition of attribute grammar can be stated

in the following manner.

Definition 1. An attribute grammar G is a quadruple (Gu, A, V, R) consist-

ing of:

(1) An underlying context-free grammar Gu = (N,Σ, P, S) with nontermi-

nals N , terminals Σ, production rules P , and start symbol S.
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Production rule p ∈ P has the form

p : X0 → w0X1w1 · · ·wn−1Xnwn,

where n depends on p, Xi ∈ N and wi ∈ Σ∗ for every i ∈ [0, n]. Given

that syntax is of secondary importance, p will always be abbreviated

to p : X0 → X1 · · ·Xn.

(2) For every nonterminal X ∈ N a set of attributes A(X) = I(X)∪S(X),

where I(X) and S(X) are disjoint sets of inherited and synthesized

attributes, respectively.

(3) For every attribute α, a set of possible values denoted by V (α).

(4) For every production p ∈ P , a set of semantic rules R(p).

To avoid confusion, attribute α will be called attribute occur-

rence (α, p, j) when α ∈ A(Xj) in production rule p : X0 → X1 · · ·Xn

is meant. All the attribute occurrences of p are partitioned into two

sets of defined and applied occurrences denoted by DO(p) and AO(p),

respectively.

DO(p) = {(s, p, 0) | s ∈ S(X0)} ∪ {(i, p, k) | i ∈ I(Xk), k ∈ [1, n]}

AO(p) = {(i, p, 0) | i ∈ I(X0)} ∪ {(s, p, k) | s ∈ S(Xk), k ∈ [1, n]}

The semantic rules in R(p) define all and only the attribute oc-

currences in DO(p) as a function of certain attribute occurrences in

AO(p). Thus, a semantic rule defining (α, p, k) ∈ DO(p) has the form

(α, p, k) = f((α1, p, k1), . . . , (αm, p, km)),
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where f is a semantic function from V (α1)× · · · × V (αm) to V (α) and

(αi, p, ki) ∈ AO(p) for all i ∈ [1, m]. It is said that (α, p, k) depends on

(α1, p, k1), . . . , (α1, p, k1). �

Notation. Multiple occurrences of the same nonterminal, for example A,

in a production are distinguished by subscripts: A0 is written for the first

occurrence of A, A1 for the second occurrence of A, and so on. No con-

fusion should arise using this notation: only when explicitly defined that

X is a nonterminal of an attribute grammar G, each Xi in production

p : X0 → X1 · · ·Xn ∈ P stands for an occurrence of X, and for an arbi-

trary nonterminal otherwise. �

Each attribute grammar G considered throughout the remainder of this

work is, without loss of generality, assumed to be reduced in the sense thatGu

is reduced and I(S) = ∅. The context-free grammar Gu on which attribute

grammar G is based, is assumed to be reduced in the sense that for all X ∈ V
with V = N ∪ Σ, there is a derivation S ⇒∗ αXβ ⇒∗ αγβ, where γ ∈ Σ∗.

(That is, Gu is reduced if all symbols in the vocabulary V are reachable from

the start symbol S and produce at least one terminal string.)

For the sake of clarity, the dependencies between the attribute occurrences

of a production p are often visualized by means of the dependency graph

DG(p) of p. This is a graph showing all the attribute occurrences of p as nodes

and showing an arc from every (α, p, j) ∈ AO(p) to every (β, p, k) ∈ DO(p)

if and only if (β, p, k) depends on (α, p, j).

The notation and terminology used for a derivation tree t of an attribute

grammar is defined by the following conventions in which n is assumed to be

a node of t. If production p : X0 → X1 · · ·Xm is applied at node n, then ni

denotes the node with label Xi. (Thus ni denotes the i-th nonterminal child

15



of node n if i ∈ [1, m], and n itself if i = 0.) The subtree of n, denoted by

t(n), is the tree consisting of node n and all its descendants in t. To avoid

ambiguities, an attribute α of node n is referred to as attribute instance

α(n), where n is labelled by X and α ∈ A(X). All the attribute instances

of tree t depend on each other according to the dependencies of the applied

productions. The root of a derivation tree is always assumed to be labelled

by the start symbol S, and its leaves are assumed to be labelled by symbols

from Σ.

An applied occurrence is said to be single-use if there is exactly one

defined occurrence which depends on it. Similarly, an attribute instance is

said to be single-use if there is exactly one instance which (directly) depends

on it. To stress the fact that an applied occurrence or an attribute instance

may not necessarily be single-use, the term multi-use will be used.

The evaluation of attribute instances in a derivation tree is carried out by

a (tree-walking) attribute evaluator. This is a program which traverses the

derivation tree in the following manner: starting at the root, it walks from

node to node, evaluating at each node a number of its attribute instances until

all attribute instances have been computed and the root is again reached.

A simple m-visit evaluator, m > 0, for an attribute grammar G is an

attribute evaluator where the evaluation strategy is completely determined

by a totally ordered partition A1(X), . . . , Aφ(X)(X) of φ(X) ∈ [0, m] parts

over the attributes A(X) of each X ∈ N . It traverses the derivation tree in

such a way that, for each node n labelled by X and each i ∈ [1, φ(X)], all

attribute instances of Ai(X) at n are computed during the i-th visit to the

subtree of n.

Definition 2. A simple m-visit evaluator E for an attribute grammar G
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consists of components (1)-(4) where:

(1) For every X ∈ N , an integer φ(X) ∈ [0, m].

(2) For each X ∈ N , a partition A1(X), . . . , Aφ(X)(X) of A(X).

(3) For every p : X0 → X1 · · ·Xn ∈ P and every i ∈ [1, φ(X0)], a sequence

vp(i) ∈ { visitj(Xk) | j ∈ [1, φ(Xk)], k ∈ [1, n] }∗

such that sequence visit1(Xk) · · · visitφ(Xk)(Xk) with k ∈ [1, n] can be

obtained from vp(1) · · · vp(φ(X0)) by the deletion of all elements in

{ visitj(Xl) | j ∈ [1, φ(Xl)], l ∈ [1, n], l �= k }.

(4) For each p ∈ P , a set of evaluation rules E(p) such that it has a rule

set (α, p, k) to f((α1, p, k1), . . . , (αm, p, km))

if and only if (α, p, k) = f((α1, p, k1), . . . , (αm, p, km)) ∈ R(p). �

The formal definition of a simple m-visit evaluator presented here is based

on the definition given by Engelfriet and De Jong in [10]. With respect to

the notation used here, the following should be noted.

(a) Definition 2(1). — As implied by the informal definition of a simple

m-visit evaluator, integer φ(X) is assumed to be the total number of

visits to any node x labelled by X.

(b) Definition 2(2). — No order is specified between the attributes in a

given set Ai(X) and, consequently, no order is forced on their com-

putation. Nonetheless, a particular order is always assumed on their

computation and, thus, on Ai(X).
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(c) Definition 2(3). — For every node x at which production p is applied,

visitj(Xk) represents the j-th visit to node xk so that vp(i) denotes the

sequence of visits that must be made to the children of x during the i-th

visit to x. Although Xk and Xl with k �= l possibly represent the same

nonterminal, visitj(Xk) and visitj(Xl) are different visits of the eval-

uator by the notational convention to distinguish multiple occurrences

of the same nonterminal in a production by subscripts.

(d) Definition 2(4). — Evaluation rules are distinct from semantic rules

and specify how to compute the values of the attribute instances of the

occurrences in DO(p). The evaluation function f in an evaluation rule

set (α, p, k) to f((α1, p, k1), . . . , (αm, p, km))

is an implementation of the semantic function of the same name. This

implementation evaluates the actual parameters x1, . . . , xk of function

call f(x1, . . . , xk) in a sequential order. The attribute instances of ap-

plied occurrences (α1, p, k1), . . . , (αm, p, km) necessary to compute an

instance of (α, p, j) are thus used in sequential order.

A simple m-visit evaluator may visit any number of sons of a node n in

any order, during one visit to n. A simple m-sweep evaluator is also a simple

m-visit evaluator, but it operates a more restricted visit strategy. When this

evaluator visits a node it must visit each of the sons of this node once, in a

specific order which depends on the visit number and the production applied

at the node.

Definition 3. A simple m-sweep evaluator E of an attribute grammar G is

a simple m-visit evaluator of G such that:

18



(1) For all X ∈ N , φ(X) = m.

(2) For every production p : X0 → X1 · · ·Xn ∈ P and every i ∈ [1, φ(X0)],

the sequence vp(i) has the form

visiti(Xp1) · visiti(Xp2) · · · visiti(Xpn),

where π(p, i) = 〈p1, . . . , pn〉 is a permutation of 〈1, . . . , n〉. �

An even more restricted evaluator is obtained when the simple m-sweep

evaluator is constrained to visit the sons of a node in a left-to-right (L) or

a right-to-left (R) order depending on the sweep number. This evaluator is

known as a simple m-pass evaluator.

Definition 4. A simple m-pass evaluator E of an attribute grammar G is a

simple m-sweep evaluator of G such that for every p : X0 → X1 · · ·Xn ∈ P
and every i ∈ [1, φ(X0)], the sequence vp(i), has the form

visiti(X1) · visiti(X2) · · · visiti(Xn),

if d(i) = L, and the form

visiti(Xn) · visiti(Xn−1) · · · visiti(X1),

if d(i) = R where d : [1, m] → {L,R } is a given mapping that specifies the

direction of the passes. �

The term m-X is replaced by multi-X where X ∈ { pass, sweep, visit }, if

an evaluator is simple m-X for some m > 0. In addition to this convention,

an attribute grammar will be called simple multi-X if there exists a simple

multi-X evaluator for it. It will be clear from the previous definitions that if

an attribute grammar is simple multi-pass, it is also simple multi-sweep, and
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if an attribute grammar is simple multi-sweep, it is also simple multi-visit.

The theory of these classes of evaluators and their corresponding classes of

attribute grammars is developed in [2,4,8,9,19].

Remark. The pass direction in the simple multi-pass evaluator is the same

for all trees during a particular pass, whereas in the simple multi-sweep

evaluator the order depends on the production applied at the root node of

the trees. An evaluator more restricted than the simple multi-sweep evaluator

but more general than the simple multi-pass evaluator, is obtained if the pass

direction depends on the pass number and on the production applied at the

node (that is, d(p, i) instead of d(i)). By definition the corresponding class

of simple multi-waddle attribute grammars is properly included in the class

of simple multi-sweep attribute grammars, and properly includes the class of

simple multi-pass attribute grammars. Notice that each simple multi-sweep

attribute grammar G with Gu in Chomsky normal form is also simple multi-

waddle. It is shown in [9] that the problem of whether, for a fixed m, an

attribute grammar is simple m-sweep is NP-complete whereas this problem

is polynomial for simple m-pass. It is open whether this problem is still

NP-complete for the class of simple m-waddle attribute grammars. �

The behaviour of the evaluators defined above can be expressed by a

set of extended visit-sequences with one extended visit-sequence for each

production. Let Ip,j(Xi) be the set { (α, p, i) | α ∈ Aj(Xi) ∩ I(Xi) } and

Sp,j(Xi) be the set { (α, p, i) | α ∈ Aj(Xi) ∩ S(Xi) } for every production

p : X0 → X1 · · ·Xn ∈ P , every i ∈ [0, n], and every j ∈ [1, φ(Xi)].

Definition 5. The extended visit-sequence of production p : X0 → X1 · · ·Xn

is the sequence Vp = Vp(1) · · ·Vp(φ(X0)) where, for every i ∈ [1, φ(X0)],
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Figure 2. Dependency graphs DG(p1), DG(p2), DG(p3), and DG(p4).
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sequence Vp(i) equals

〈Ip,i(X0), Ip,m1(Xj1), visitm1(Xj1), Sp,m1(Xj1), . . .

. . . , Ip,mr(Xjr), visitmr(Xjr), Sp,mr(Xjr), Sp,i(X0)〉,

if vp(i) = visitm1(Xj1)visitm2(Xj2) · · · visitmr (Xjr). �

The following example illustrates this concept.

Example 1. Let G be a simple multi-visit attribute grammar with start

symbol Z, nonterminals N = {Z, A }, terminals Σ = { a, b }, and produc-

tions

P = { p1 : Z → A, p2 : A0 → aA1, p3 : A0 → bA1, p4 : A→ b }.

The sets of attributes of each nonterminal are:

I(Z) = ∅ I(A) = { i1, i2, γ }
S(Z) = { s } S(A) = { s1, s2, α }

Figure 2 shows the relevant aspects of sets R(p1), R(p2), R(p3), and R(p4)

by means of their dependency graphs.

Attribute grammar G is evaluated by evaluator E whose behaviour is

given by means of the extended visit sequences of Table 1. It should be clear

from these sequences that E is a simple multi-pass evaluator. In the first

pass all the instances of attributes i1, s1, γ, and α are evaluated, and in the

second pass all the instances of i2, s2, and s are evaluated. The direction of

the passes d(1) and d(2) are irrelevant in this case due to the linearity of the

underlying context-free grammar Gu. �

When working with extended visit-sequences, the following notations will

be used. The (unique) set in Vp that contains attribute occurrence (α, p, j)
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is denoted by set(α, p, j). For elements a and b in Vp, the expression “a < b

in Vp” will be written if a occurs before b in Vp.

The evaluation performed by a simple multi-visit evaluator E given some

derivation tree t can be partly described by means of an evaluation sequence.

This sequence, denoted by ρ(t), is a string in which all attribute instances

of tree t occur exactly once, such that attribute instance α appears before

instance β in ρ(t) if and only if α is computed before β. Thus, ρ(t) describes

the order in which the attribute instances of t are computed, and in a partial

manner, the way in which they are used: the order in which an evaluation

function f((α1, p, k1), . . . , (αm, p, km)) of an evaluation rule of E uses the

values of the instances of (α1, p, k1), . . . , (αm, p, km) is missing in ρ(t). Note

that ρ(t) can easily be obtained from the extended visit-sequences of the

productions occurring in t using the implicitly assumed ordering of the sets

Aj(Xi).
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CHAPTER THREE

————–

Global Storage Allocation of Single-use

Applied Occurrences

——————−−——————

Typically, the values of computed attribute instances have to be stored dur-

ing evaluation because the values of other attribute instances depend on them

or because they have to be delivered as output. For this purpose, the eval-

uator needs a storage allocation strategy. In a naive allocation strategy, the

values of computed attribute instances reside at their own nodes during the

entire evaluation process. Unfortunately, such a simple strategy is too space

consuming for practical use.

In this dissertation a storage allocation strategy for the evaluators of the

previous chapter will be developed with the objectives of:

(1) reusing storage space occupied by attribute values which are no longer

required, and

(2) leaving the evaluation strategy of the evaluator unchanged and its

structure independent of specific derivation trees.
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The technique investigated in this dissertation to accomplish these objec-

tives is the allocation of particular attribute instances to some global data

structure such that it is applicable to any derivation tree. Generally, global

variables and stacks are considered as candidates for such a global storage

allocation scheme (see for example [10,15,18,20]). However these are not the

only conceivable global data structures appropriate for global storage alloca-

tion. In particular, the use of global queues for global storage allocation will

also be considered.

This chapter presents a number of practical and theoretical results con-

cerning the global storage allocation of all the attribute instances of a single-

use applied occurrence. The practical results focus on the necessary and

sufficient conditions to decide at evaluator construction time whether a sim-

ple multi-sweep evaluator can allocate the instances of a single-use applied

occurrence to a global variable, stack, or queue.

The theoretical results extend the scope of the investigation by consid-

ering which data structures are required for the global storage allocation of

the instances of single-use applied occurrences in simple multi-X evaluators,

where X ∈ { pass, sweep, visit }. Let D be the set of data structures appro-

priate for the global storage allocation of the instances of single-use applied

occurrences. This chapter sets out to establish the following theoretical re-

sults with respect to D.

(1) Simple multi-pass evaluators. — For these evaluators, it will be shown

that it is sufficient to consider stacks and queues for the global storage

allocation of the instances of single-use applied occurrences.

(2) Simple multi-sweep evaluators. — With respect to these evaluators,

it will be shown that it is sufficient to consider a proper subset of D
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for the global storage allocation of the instances of single-use applied

occurrences. This subset, however, is not finite.

(3) Simple multi-visit evaluators. — For this class of evaluators, it will be

shown that it is no longer sufficient to consider only a subset of D

for the global storage allocation of the instances of single-use applied

occurrences. The entire set D is needed.

In order to prove results (1)-(3) above, it is necessary to provide a definition of

the very general class D. Stacks and queues, in which a stored value cannot be

accessed more than once, are particular instances of data structures belonging

to this class.

All results presented in this chapter are carried over to multi-use applied

occurrences in Chapter 4.

To provide a formal basis for this research, it is necessary to define pre-

cisely what it means to state that a group of attribute instances of a deriva-

tion tree, given some simple multi-visit evaluator performing the evaluation

of this tree, can be allocated to a global variable, stack or queue. These

definitions are not restricted to a group of single-use attribute instances in

order to make them more general.

First the notion of the existence of an attribute instance in a tree t is

introduced. Let E be a simple multi-visit evaluator computing the attribute

instances of derivation tree t. (Note that at each moment in time at which E

is executing an evaluation rule, it is either assigning a value to an instance of a

defined occurrence or using the value of an instance of an applied occurrence

for the computation of the evaluation function.) The existence ξ(α) of an

attribute instance α in t is the sequence 〈a1, . . . , an〉 of natural numbers
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derived from the evaluation performed by E, where n ≥ 1 depends on α and

a1 < a2 < · · · < an such that α is computed (i.e. assigned a value) at time

a1 and applied (i.e. used) at times a2, . . . , an. Thus, if α and β are distinct

attribute instances in t with ξ(α) = 〈a1, . . . , an〉 and ξ(β) = 〈b1, . . . , bm〉 then

ai �= bj (because of the sequential nature of E).

Readers familiar with references [15,20] or related work should not confuse

the notion of existence with the notion of the lifetime of an attribute instance

α which is defined as the pair (a1, an) assuming that ξ(α) = 〈a1, . . . , an〉 with

n ≥ 2. The concept of lifetime contains less information and is defined only

for instances which are applied at least once.

It goes without saying that it is useless to store attribute instances which

are never applied; that is, to store instances which do not have to be delivered

as output and on which no other attribute instances depend. Therefore, it

is assumed that n ≥ 2 for every attribute instance under consideration with

existence 〈a1, . . . , an〉.
Let A denote a group of attribute instances occurring in some derivation

tree which is evaluated by a simple multi-visit evaluator.

Definition 6. A group A of attribute instances can be allocated to a global

variable if for every α ∈ A with ξ(α) = 〈a1, . . . , an〉 the following holds: there

is no β ∈ A, with ξ(β) = 〈b1, . . . , bm〉, such that a1 < b1 < an. �

A stack is a linear list in which insertion, access and deletion all take

place at one end of the list.

Definition 7. A group A of attribute instances can be allocated to a global

stack if for every α ∈ A with ξ(α) = 〈a1, . . . , an〉 the following holds: there

is no β ∈ A, with ξ(β) = 〈b1, . . . , bm〉, such that a1 < b1 < ai < bm for some

i ∈ [2, n]. �
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A queue is a linear list in which insertion takes place at one end and

access and deletion at the other end of the list.

Definition 8. A group A of attribute instances can be allocated to a global

queue if for every α ∈ A with ξ(α) = 〈a1, . . . , an〉 the following holds: there

is no β ∈ A, with ξ(β) = 〈b1, . . . , bm〉, such that a1 < b1 and b2 < an. �

The relation between stacks, queues, and global variables is expressed in

the following lemma.

Lemma 1. A group of attribute instances A can be allocated to a global

stack as well as to a global queue if and only if A can be allocated to a global

variable.

Proof. Immediate from the definitions above and the assumption that all

instances in A are used at least once. �

So far, the allocation of an arbitrary group of attribute instances of a par-

ticular derivation tree has been considered. However, to meet the objective of

leaving the structure of the evaluator independent of specific derivation trees,

the groups of attribute instances which are considered must be restricted to

those that are statically characterizable. In the literature, global storage allo-

cation is considered for the instances of a particular attribute. Here, however,

global storage allocation for the instances of a particular applied occurrence

is considered.

Why consider instances of applied occurrences? Before answering this

question, note that it is not interesting to consider applied occurrences that

are not used, because it is useless to store the instances of these applied occur-

rences. Therefore, each applied occurrence under consideration is assumed
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to be used. Now returning to the question, the main reason for considering

global storage allocation for the instances of an applied occurrence is that it

is not only possible but also sensible. How this can be implemented so that

no additional effort is needed in order to handle applied occurrences that are

not used will be explained in Chapter 5. The reader is invited to consider

Example 2 which illustrates the rationale behind this approach.

Why not consider attribute instances of a defined occurrence? To explain

this, assume that an evaluator is visiting a node n of a tree t and is bound

to visit node m after the computation of instance α(m) at m. (Note that

the value of an instance of a node is always computed before the node is

actually visited.) Then, since the production applied at node n is known,

the evaluator knows of which defined occurrence α(m) is an instance. Thus

it is possible to allocate the value of α(m) to the appropriate data structure

for the defined occurrence of which α(m) is an instance. Now, assume that

the evaluator actually visits node m and that it needs the value of α(m) to

compute some attribute instance. Since only the production applied at node

m is known, the evaluator no longer knows of which defined occurrence α(m)

is an instance. Consequently, it does not know where the value of α(m) is

allocated. Hence, the global storage allocation for the instances of a defined

occurrence needs more information about the tree than is contained in its

nodes and in the structure of the original evaluator.

Next, the necessary and sufficient conditions are presented to decide for

a simple multi-sweep evaluator whether global storage allocation to a stack

is possible for the attribute instances of a single-use applied occurrence.

Lemma 2. Let E be a simple multi-sweep evaluator for an attribute gram-

mar G and let p : X0 → X1 · · ·Xn ∈ P with (α, p, j) ∈ AO(p) single-use and
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(β, p, i) the (unique) occurrence in DO(p) depending on (α, p, j). Assume

α ∈ Aa(Xj) and β ∈ Ab(Xi). The attribute instances of (α, p, j) cannot be

allocated to a global stack during evaluation by E if and only if at least one

of the following conditions is satisfied.

(1) There is an integer k ∈ [1, n] such that, for some γ and δ in V ∗,

Xk ⇒∗ γX0δ and

set(α, p, j) < visita(Xk) < set(β, p, i) < visitb(Xk) in Vp.

(2) There is an integer k ∈ [1, n] such that, for some γ and δ in V ∗,

Xk ⇒∗ γX0δ and

visita(Xk) < set(α, p, j) < visitb(Xk) < set(β, p, i) in Vp.

(3) There exist a production q : Y0 → Y1 · · ·Ym and distinct k, l ∈ [1, m]

such that, for some γ, δ, η and ω in V ∗, Yk ⇒∗ γX0δ, Yl ⇒∗ ηX0ω, and

visita(Yk) < visita(Yl) < visitb(Yk) < visitb(Yl) in Vq.

Proof. Let t be a derivation tree with x and y denoting two of its nodes

at which production p is applied. The instance of (α, p, j) at node xj is

denoted by γ and the instance of (α, p, j) at node yj is denoted by δ, where

ξ(γ) = 〈g0, g1〉 and ξ(δ) = 〈d0, d1〉.
Firstly it will be shown that the instances of (α, p, j) cannot be allocated

to a global stack during evaluation by E if one of the conditions (1)-(3) is

satisfied. Each condition is treated separately (recall that Gu is reduced).

(a) Condition (1) is satisfied. — Then G has a derivation tree such as t

(where node y is a descendant of node xk or is node xk itself) which is
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evaluated by E is such a way that g0 < d0 < g1 < d1. This inequality

directly shows that, by Definition 7, the instances of (α, p, j) cannot be

allocated to a global stack during evaluation by E.

(b) Condition (2) is satisfied.— Then G has a tree such as t (where y is

a descendant of xk or is xk itself) which is evaluated by E in such a

way that d0 < g0 < d1 < g1 holds. This inequality again implies that

the instances of (α, p, j) cannot be allocated to a global stack during

evaluation by E.

(c) Condition (3) is satisfied.— Let z be a node of t at which production q

is applied. Then G has a tree such as t (where x a descendant of node

zk or is zk itself, and y a descendant of node zl or is zl itself) which is

evaluated by E in such a way that g0 < d0 < g1 < d1 holds. Hence

the instances of (α, p, j) cannot be allocated to a global stack during

evaluation by E.

Secondly, it will be shown that at least one of the conditions (1)-(3) is

satisfied if the instances of (α, p, j) cannot be allocated to a global stack

during evaluation by E. Therefore, assume that the instances of (α, p, j)

cannot be allocated to a global stack during evaluation by E. Then G must

have a derivation tree such as t which is evaluated by E in such a way that

inequality g0 < d0 < g1 < d1 holds (compare Definition 7). Three cases can

be identified.

(a) Node y is a descendant of node xk or is xk itself for some k ∈ [1, n].—

It is clear that set(α, p, j) < visita(Xk) < set(β, p, i) < visitb(Xk) in

Vp. Hence condition (1) is satisfied.
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(b) Node x is a descendant of yk or is yk itself for some k ∈ [1, n].— It is

clear that visita(Xk) < set(α, p, j) < visitb(Xk) < set(β, p, i) in Vp, so

that condition (2) holds.

(c) Nodes x and y are incomparable.— Let z be the root of the smallest

tree of t containing both x and y, and let q : Y0 → Y1Y2 · · ·Ym be the

production applied at z. Assume x is a descendant of zk or zk itself

and y a descendant of zl or zl itself, for some k, l ∈ [1, m]. (Note that

k �= l.) Then visita(Yk) < visita(Yl) < visitb(Yk) < visitb(Yl) in Vq.

This fact implies that condition (3) is satisfied. �

Lemma 3 states the necessary and sufficient conditions to decide for a

simple multi-sweep evaluator whether global storage allocation to a queue

is possible for the instances of a single-use applied occurrence. The proof is

similar to that of Lemma 2.

Lemma 3. Let E be a simple multi-sweep evaluator for an attribute gram-

mar G and let p : X0 → X1 · · ·Xn ∈ P with (α, p, j) ∈ AO(p) single-use and

(β, p, i) the (unique) occurrence in DO(p) depending on (α, p, j). Assume

α ∈ Aa(Xj) and β ∈ Ab(Xi). The attribute instances of (α, p, j) cannot be

allocated to a global queue during evaluation by E if and only if at least one

of the following conditions is satisfied.

(1) There is an integer k ∈ [1, n] such that, for some γ and δ in V ∗,

Xk ⇒∗ γX0δ and

set(α, p, j) < visita(Xk), and visitb(Xk) < set(β, p, i) in Vp.

(2) There is an integer k ∈ [1, n] such that, for some γ and δ in V ∗,

Xk ⇒∗ γX0δ and
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visita(Xk) < set(α, p, j), and set(β, p, j) < visitb(Xk) in Vp.

(3) There exist a production q : Y0 → Y1 · · ·Ym and distinct k, l ∈ [1, m]

such that, for some γ, δ, η and ω in V ∗, Yk ⇒∗ γX0δ, Yl ⇒∗ ηX0ω, and

visita(Yk) < visita(Yl) and visitb(Yl) < visitb(Yk) in Vq. �

The following theorem arises immediately from these lemmas.

Theorem 1. Let E be a simple multi-sweep evaluator for an attribute gram-

mar G and let (α, p, j) be a single-use applied occurrence of G. It is decid-

able in polynomial time whether the instances of (α, p, j) can be allocated to

a global variable, stack or queue during evaluation by E.

Proof. The theorem follows from Lemmas 1-3 using the fact that the condi-

tions in Lemmas 2 and 3 can be checked in polynomial time. �

Applied Occurrence Allocation

(γ, p2, 0) global queue

(γ, p3, 0) global variable

(γ, p4, 0) global variable

Table 2. Allocation of applied occurrences (γ, p2, 0),

(γ, p3, 0), and (γ, p4, 0).

Example 2. This example continues Example 1. By means of Lemmas 1-3

the allocations of Table 2 can be found for the attribute instances of (γ, p2, 0),

(γ, p3, 0), and (γ, p4, 0) during evaluation by E. �
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Remark. In the literature, attributes are sometimes classified into temporary

and nontemporary attributes. An attribute α is called temporary if every

applied occurrence of α is temporary. An applied occurrence (α, p, j) is

temporary if each defined occurrence (β, p, i) that depends on (α, p, j) occurs

in the same sequence of Vp as (α, p, j). Lemma 2 shows that every temporary

single-use applied occurrence can be allocated to a global stack. Thus, if such

an occurrence can be allocated to a global queue, then it can be allocated to

a global variable. On the other hand, for nontemporary single-use applied

occurrences, Lemmas 2 and 3 show that queues can be handled as easily as

stacks. �

To show which other data structures appropriate for the global storage

allocation of the instances of single-use applied occurrences are needed in

simple multi-X evaluators, with X ∈ {pass, sweep, visit}, the data structures

that are relevant for this purpose must be characterized. In order to do this,

it is useful to make the following observations.

(1) Because of the sequential nature of simple multi-visit evaluation, it is

sufficient to consider only data structures in which the attribute values

are stored chronologically.

(2) Because of the atomic nature of a single-use applied occurrence at the

descriptional level, only two operations can be performed for all its

instances, namely an input operation i to store an attribute value and

an output operation o to fetch (i.e. access and delete) a stored value.

(3) Because of the objective to leave the structure of the evaluator inde-

pendent of specific derivation trees, the global data structures used by

the evaluator must also be independent of specific derivation trees.
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From (1) and (2) it is inferred that only linear data structures that provide

the basic operations i and o need to be considered. From (3) it is inferred

that these basic operations can only depend on the order in which instances

are stored and not on the stored values themselves. Particular examples of

such data structures are stacks and queues where the possibility of accessing

a stored value more than once is excluded.

The formal characterization of these data structures, called basic linear

data structures, begins with their definition. Thereafter, an explanation of

the definition will be given. The symbol · is used to denote concatenation

of sequences, #x(α) to denote the number of occurrences of symbol x in

sequence α, and |α| to denote the length of sequence α.

Definition 9. A basic linear data structure D over a set Data is a structure

(Σ, c, p, i, o), where

(1) Σ is a set whose elements 〈δ, M〉 represent the possible content of the

data structure D, consisting of a state δ ∈ { i, o }∗ and a set of time-

stamped data M ⊆ Data× N
+.

(2) c denotes the initial content of data structure D defined as 〈ε,∅〉.

(3) p : { i, o }∗ → N
+, is a protocol, satisfying,

p(w1 · · ·wn) = j

for some j ∈ [1,#i(w1 · · ·wn)], such that for every k ∈ [1, n], with

wk = o, p(w1 · · ·wk−1) �= j (if such a j exists).

(4) i : Σ × Data→ Σ, is the input operation,

i(〈δ, M〉, ∂) = 〈δ · i, M ∪ { (∂, #i(δ) + 1) }〉.
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(5) o : Σ → Σ ×Data, is the output operation,

o(〈δ, M〉) = (〈δ · o, M \ { (∂, p(δ)) }〉, ∂). �

Remark. There should be no confusion over whether i denotes the symbol

i or the input operation i, and over whether o denotes the symbol o or the

output operation o; state δ ∈ { i, o }∗ wherein i and o denote the symbols i

and o, respectively. �

Figure 3. A model of a basic linear data structure.

How does a basic linear data structure work? A model of such a data

structure is shown in Figure 3. The input control represents the program

invoked by a call of input operation i with current content 〈δ, M〉 ∈ Σ and

some item ∂ ∈ Data. It adds item ∂ with time stamp #i(δ) + 1 to M and

sets the state to δ · i. Initially, the content is c (i.e. 〈ε,∅〉). The output

control represents the program invoked by a call of output operation o with

current content 〈δ, M〉 ∈ Σ. If M is not empty, this program deletes the (by

its time-stamp) unique element (∂, p(δ)) in M , sets the state to δ · o, and
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delivers item ∂. If M is empty, this program aborts due to the simple fact

that p(δ) is undefined in this case.

The input and output control are the same for all basic linear data struc-

tures; only the protocol changes from one basic linear data structure to an-

other. So, for a given set Data, a basic linear data structure is completely

determined by specifying the protocol p. The class of all these basic linear

data structures will be denoted by D. (Notice that not each structure in D

can efficiently be implemented; it even may have a noncomputable protocol.)

Some additional concepts are needed to formalize what is meant by allo-

cating a group of single-use instances A of some derivation tree t to a data

structure D ∈ D during evaluation of a simple multi-visit evaluator E. (Note

that the possible values of the instances in A form the set Data over which

D is a data structure). Let α1 · · ·αn be the evaluation sequence ρ(t) induced

by E and αi1 , . . . , αi|A| all the instances of A in the order in which they occur

in ρ(t). The define-and-use sequence of A is the sequence ψ which is defined

by the following construction.

set ψ to ρ(t);

for j = 1, . . . , n

do if there is a k ∈ [1, |A|] such that αj = αik

then replace αj in ψ by @k

else replace αj in ψ by @

fi;

if αj depends on instances in A

then let αij1
, . . . , αijm

be all the instances in A which

are successively used to compute αj
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in replace @ in ψ by j1 · · · jm

ni

else remove @ from ψ

fi

od;

Thus, the define-and-use sequence ψ of A is a sequence in which each

number i ∈ [1, |A|] occurs twice such that this sequence encodes the order

in which the single-use instances of A are computed and used. The action

sequence of A is obtained from ψ by replacing all first occurrences of numbers

in ψ by i and replacing all second occurrences of numbers in ψ by o. The

output sequence of A is obtained from ψ by deleting all first occurrences of

numbers in ψ. Finally, DUE(α, p, j) is the set containing the define-and-use

sequences of the instances of a single-use applied occurrence (α, p, j) for any

derivation tree evaluated by a simple multi-visit evaluator E.

Example 3. Consider Example 1 once again. It is easily seen that

DUE(γ, p2, 0) = { ε, 1 · 1, 1 · 2 · 1 · 2, 1 · 2 · 3 · 1 · 2 · 3, . . . },

DUE(γ, p3, 0) = { ε, 1 · 1, 1 · 1 · 2 · 2, 1 · 1 · 2 · 2 · 3 · 3, . . . }.

For each define-and-use sequence ψ ∈ DUE(γ, p2, 0), an action sequence inon

and an output sequence 1 · 2 · · ·n can be found where |ψ| = 2n. Similarly,

for each ψ ∈ DUE(γ, p3, 0), an action sequence (io)n and an output sequence

1 · 2 · · ·n can be found where |ψ| = 2n. �

At this point, all the concepts have been introduced to enable presentation

of the following definition. Let A be a group of single-use instances in some

derivation tree which is evaluated by a simple multi-visit evaluator.
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Definition 10. A group A of single-use attribute instances with action se-

quence x1, x2, . . . , x2|A| and output sequence y1, . . . , y|A| can be allocated to a

basic linear data structure D if its protocol satisfies

p(x1x2 · · ·xk−1) = y#o(x1x2···xk)

for all k ∈ [1, 2|A|] with xk = o. �

To illustrate the generality of the class of basic linear data structures D,

observe that the requirement of Definition 10 to allocate A does not conflict

with the demand on protocols as stated in Definition 9(3). Hence, there is

always some D in D (with Data the set of possible values of the instances in

A) to which A can be allocated.

The behaviour of a basic linear data structure D is a useful concept

which directly relates the sequence of actions performed on D with the order

in which the stored values are fetched by D.

Definition 11. The behaviour of a basic linear data structure D, with pro-

tocol p, is the partial function f : { i, o }∗ → (N+)∗ satisfying

f(x1 · · ·xn) = p(x1 · · ·xi1) · · · p(x1 · · ·xim),

for all possible action sequences x1 · · ·xn such that i1 < i2 < · · · < im and,

for each j ∈ [1, m], ij ∈ [0, n− 1] and xij+1 = o where m = #o(x1 · · ·xn). �

The reader can check that any data structure D in D, with behaviour f ,

has the following properties.

(1) D is deterministic (because f is a function).

(2) If an item ∂ ∈ Data has been stored in D, then it is possible to obtain

it by a series of invocations of output operation o. That is, for all action
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sequences σ such that f(σ) is defined and for each j ∈ [1,#i(σ)], there

is a continuation sequence τ ∈ { o }∗ such that j occurs in f(σ · τ).

(3) The result of a sequence of actions applied on D is not influenced by

how this sequence is continued. For all σ and τ , there is a θ, possibly

ε, such that

f(σ · τ) = f(σ) · θ.

Notice that the equality f(σ · τ) = f(σ) · f(τ) does not hold in general.

The result of an action sequence may depend on its history.

As an immediate consequence of the previous definitions, the following

lemma can be stated.

Lemma 4. Let D be a basic linear data structure with behaviour f , and

E a simple multi-visit evaluator for an attribute grammar G with single-

use applied occurrence (α, p, j). The attribute instances of (α, p, j) can be

allocated to D during evaluation by E if and only if

f(σ) = θ

for each φ ∈ DUE(α, p, j), where σ denotes the action sequence and θ the

output sequence obtained from φ. �

Given previous conclusion based on the earlier discussion of the generality

of the class of basic linear data structures D, it follows from Lemma 4 that if

a simple multi-visit evaluator E cannot allocate the instances of a single-use

applied occurrence (α, p, j) to any basic linear data structure, then this is

only caused by some incompatibility in at least two define-and-use sequences
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of DUE(α, p, j). This situation will be considered in detail in the proof of

Theorem 2.

Now stacks and queues are defined as elements of the class D.

Definition 12. Let D be a data structure in D.

(1) D is a basic stack if it has a protocol p satisfying:

p(w1 · · ·wn) =




#i(w1 · · ·wn) if wn = i

p(reduce(w1 · · ·wn)) if wn �= i

where reduce(w) is the sequence obtained from w by deleting the last

occurrence of a sequence of the form io in w.

(2) D is a basic queue if it has a protocol p satisfying:

p(w) = #o(w) + 1. �

There are a lot of protocols besides the basic stack and the basic queue

protocols. The alternating protocol, for instance, applies the queue protocol

and the stack protocol successively, starting with application of the queue

protocol on the first output demand. If D ∈ D with behaviour f has the

alternating protocol, then, for instance,

f(iiiiiooooo) = 1 · 5 · 2 · 4 · 3

and

f(iiioooioioiioo) = 1 · 3 · 2 · 4 · 5 · 7 · 6.

The reader is invited to define the alternating protocol. Later, an attribute

grammar with a single-use applied occurrence is presented that can be stored

on the basic linear data structure with this unusual protocol.
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The following two lemmas show that for single-use attribute instances the

definitions of global stacks and queues are consistent with Definitions 12(1)

and 12(2), respectively. Let A be a group of single-use instances in some

derivation tree which is evaluated by a simple multi-visit evaluator.

Lemma 5. A group A of single-use attribute instances can be allocated to a

global stack if and only if it can be allocated to a basic stack.

Proof. Let σ = x1 · · ·x2|A| be the action-sequence of A. It has already been

noted that there is always a data structure in D, with Data the set of possible

values in A, to which A can be allocated. Assume D is such a basic linear

data structure with protocol p.

The lemma is proved if it is shown that:

(1) Protocol p cannot be the basic stack protocol if A cannot be allocated

to a global stack.

(2) Protocol p, as far as it is used for the allocation of A, is the basic stack

protocol if A can be allocated to a global stack.

In order to establish the proof of assertions (1) and (2), the following

result is used (of which verification is left to the reader using Definition 7).

Claim. Group A cannot be allocated to a global stack if and only if protocol

p satisfies

p(σ1iσ2iσ3) = #i(σ1i) and p(σ1iσ2iσ3oσ4) = #i(σ1iσ2i),

where, for some m ∈ [4, 2|A|], σ1iσ2iσ3oσ4o = x1 · · ·xm.

Proof of assertion (1).— Suppose A cannot be allocated to a global stack.

Then by the claim, there must be a prefix σ1iσ2iσ3oσ4o of action sequence σ
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for which p satisfies p(σ1iσ2iσ3) = #i(σ1i) and p(σ1iσ2iσ3oσ4) = #i(σ1iσ2i).

To obtain a contradiction, assume that p is the basic stack protocol. Consider

the sequence τ4 = reduce∗(σ4), that is, the sequence obtained from σ4 by

applying reduce as many times as possible such that τ4 either ends with

an i or consists of zero or more symbols o. If τ4 ends with an i, then the

assumption that p is the basic stack protocol implies that

p(σ1iσ2iσ3oσ4) = p(σ1iσ2iσ3oτ4) > #i(σ1iσ2i).

This result contradicts the fact that p(σ1iσ2iσ3oσ4) = #i(σ1iσ2i), so that

τ4 ∈ { o }∗. Similarly, it can be inferred that τ3 = reduce∗(σ3) must be in

{ o }∗, for otherwise p(σ1iσ2iσ3) > #i(σii) according to the assumption that p

is the basic stack protocol. But, if τ3, τ4 ∈ { o }∗, then reduce∗(σ3oσ4) consists

of one or more symbols o. Thus #i(reduce
∗(σ1iσ2iσ3oσ4)) < #i(σ1iσ2i).

From this fact, and the assumption that p is the basic stack protocol, it

follows that

p(σ1iσ2iσ3oσ4)) = p(reduce∗(σ1iσ2iσ3oσ4)) < #i(σ1iσ2i).

However, this too contradicts the fact that p(σ1iσ2iσ3oσ4)) = #i(σ1iσ2i).

Therefore it must be concluded that protocol p cannot be the basic stack

protocol.

Proof of assertion (2).— Assume that A can be allocated to a global

stack. Then it has to be shown that p, as far as it is used for allocation of

A, satisfies the following two conditions (compare Definition 12(1)):

(a) If xl = i and xl+1 = o holds for some l ∈ [1, 2|A| − 1], then p(x1 · · ·xl)

must be #i(x1 · · ·xl).

(b) If xl = o and xl+1 = o holds for some l ∈ [3, 2|A| − 1], then p(x1 · · ·xl)

must be #i(reduce
∗(x1 · · ·xl)).
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Demonstration that protocol p satisfies condition (a).— Assume p does

not satisfy condition (a), so that there is an l ∈ [1, 2|A| − 1] such that xl = i,

xl+1 = o, and p(x1 · · ·xl) < #i(x1 · · ·xl) holds. (Note that by definition

p(x1 · · ·xl) ≤ #i(x1 · · ·xl).) Then there must be a sequence xl+2 · · ·xm, for

some m ∈ [l+2, 2|A|−1], such that p(x1 · · ·xl−1ioxl+2 · · ·xm) = #i(x1 · · ·xl).

This fact implies (see the claim above) that A cannot be allocated to a global

stack, and so contradics the former assumption. Thus p, as far as it used for

the allocation of A, satisfies condition (a).

Demonstration that protocol p satisfies condition (b).— Suppose p does

not satisfy condition (b), so that there is an l ∈ [3, 2|A| − 1] for which

xl = o, xl+1 = o, and p(x1 · · ·xl) �= #i(reduce
∗(x1 · · ·xl)). Assume l to be the

smallest integer in [3, 2|A| − 1] for which this property applies. Let σ1iσ2o

be x1 · · ·xl such that p(σ1iσ2o) = #i(σ1i). Then depending on reduce∗(σ2o),

three cases are distinguished.

(i) Sequence reduce∗(σ2o) ends with an i.— By assuming that l is the small-

est integer for which condition (b) does not hold and the fact that

p satisfies condition (a), there is an m ∈ [l + 1, 2|A| − 1] such that

p(σ1iσ2ooxl+2 · · ·xm) = #i(reduce
∗(σ1iσ2o)). As reduce∗(σ2o) ends with

an i, #i(reduce
∗(σ1iσ2o)) ∈ [#i(σ1i) + 1,#i(σ1iσ2o)] so that by the

claim A cannot be allocated to a global stack. This fact contradicts

the former assumption.

(ii) Sequence reduce∗(σ2o) consists of symbols o only.— This case is only

possible if #i(σ2o) < #o(σ2o). Thus, #i(reduce
∗(σ1iσ2o)) < #i(σ1i).

Using the assumption that l is the smallest integer for which condi-

tion(b) does not hold and the fact that p satisfies condition (a), the

existence of a prefix of σ2o, say τ , such that p(σ1iτ) = #i(σ1i) must
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be inferred. Since τ �= σ2o, p(σ1iτ) = #i(σ1i) contradicts the assump-

tion that p(σ1iσ2o) = #i(σ1i). Hence reduce∗(σ2o) cannot consist of

symbols o only.

(iii) Sequence reduce∗(σ2o) = ε.— Then reduce∗(σ1iσ2o) = σ1i. This fact

implies that p(σ1iσ2o) = #i(reduce
∗(σ1iσ2o)) holds, contradicting the

assumption that p(σ1iσ2o) �= #i(reduce
∗(σ1iσ2o)). Thus reduce∗(σ2o)

cannot be ε.

So protocol p, as far as it used for the allocation of A, satisfies condition (b).

This concludes the proof of this lemma. �

Lemma 6. A group A of single-use attribute instances can be allocated to a

global queue if and only if it can be allocated to a basic queue.

Proof. This proof is similar to the proof of Lemma 5 and is thus omitted.

The proof follows more directly since the queue protocol is simpler than the

stack protocol. �

The theorem presented below shows that for simple multi-pass evaluators

it is sufficient to consider stacks and queues for the global storage allocation

of the instances of single-use applied occurrences.

Theorem 2. Let E be a simple multi-pass evaluator for an attribute gram-

mar G and let p : X0 → X1 · · ·Xn ∈ P with (α, p, j) ∈ AO(p) single-use.

All the attribute instances of (α, p, j) can be allocated to a basic linear data

structure in D during evaluation by E if and only if E can allocate them to

a global stack or a global queue.

Proof. If all the attribute instances of (α, p, j) can be allocated to a global
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stack or a global queue during evaluation by E, then by Lemmas 5 and 6,

they can be allocated to a basic linear data structure as well.

A detailed proof of the converse statement is rather long, though not

difficult. Suppose that the attribute instances of (α, p, j) cannot be allocated

to a global stack or to a global queue. Then the following claim can be made.

Claim. There are (at least) two define-and-use sequences in DUE(α, p, j),

say φ and ψ, such that |φ| = |ψ| and φ �= ψ.

That this claim is sufficient to establish this part of the proof, can be seen

from the following. Suppose that (α, p, j) can be allocated to the basic lin-

ear data structure D with behaviour f . From the assumption that (α, p, j)

cannot be allocated to a global stack, it follows that (α, p, j) is nontempo-

rary. Hence, the claimed define-and-use sequences φ and ψ have the form:

1 ·2 · · · k ·φ′ and 1 ·2 · · · k ·ψ′, respectively, where φ′ �= ψ′ and k = 1
2
|φ|. (Note

that the length of a define-and-use sequence in DUE(α, p, j) is always even.)

This implies that f(ikok) = φ′ and f(ikok) = ψ′, which contradicts the fact

that the behaviour f of D is a function.
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Figure 4. Pictorial denotations of context-free derivations.

To prove the claim, the following notation is useful. Figure 4(a) denotes

that X ⇒∗ w and Figure 4(b) denotes that X ⇒∗ vY w where X, Y ∈ N and
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v, w ∈ Σ∗. Similarly, Figure 4(c) denotes that

X ⇒ w0Y1w1 · · ·wi−1Yiwi · · ·wm−1Ymwm ⇒∗ vYiw,

with w0Y1w1 · · ·wi−1 ⇒∗ v and wi · · ·wm−1Ymwm ⇒∗ w where v, w ∈ Σ∗,

i ∈ [1, m] and q : X → w0Y1w1 · · ·wm−1Ymwm ∈ P .

Of course, every diagram in Figure 4 can be seen as a graphical repre-

sentation of a derivation tree with root labeled X. In this conception, Ad

denotes the group of attribute instances of (α, p, j) that occur in the tree

represented by diagram d.

Proof of the Claim. The discussion will be separated into cases depending on

the satisfied conditions of Lemmas 2 and 3. (Recall that (α, p, j) can neither

be allocated to a global stack nor to a global queue.) The claim will be shown

only for cases (a) and (b) below; the reader is invited to show the claim for

the other cases using the same technique mutatis mutandis.

(a) Condition (3) of Lemma 2 as well as condition (1) of Lemma 3 is sat-

isfied.

(b) Condition (1) of Lemma 2 as well as condition (1) of Lemma 3 is sat-

isfied.

Note that the case in which condition (3) of both Lemmas 2 and 3 is satisfied

simultaneously, can be ruled out. This can easily be seen using the fact that

E follows a simple multi-pass strategy.

Proof for case (a).— Assume that production q : Y0 → Y1 · · ·Ym satisfies

condition (3) of Lemma 2 with respect to two right-hand side symbols, say

Yk and Yl similar to this condition, and that right-hand side symbol Xh of

production p satisfies condition (1) of Lemma 3. This assumption, together
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Figure 5. Derivation trees t1 and t2.
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with the fact that Gu is reduced, implies the existence of the two derivation

trees t1 and t2 shown in Figure 5. (Due to graphical limitations, Yk is drawn

to the left of Yl although only k �= l is assumed.) Let A4 = { β }, A6 = { γ },

and A8 = { δ } for both trees t1 and t2. That is to say, the trees are con-

structed in such a way that these diagrams contain exactly one instance of

the applied occurrence (α, p, j). It will be clear that this is possible (by

taking the smallest such trees).

By construction, the inequalities

b1 < d1 < b2 < d2, b1 < g1 < g2 < b2, g1 < d1 < g2 < d2

hold for derivation tree t1, and the inequalities

d1 < b1 < d2 < b2, b1 < g1 < g2 < b2, d1 < g1 < d2 < g2

hold for derivation tree t2 where it is assumed that ξ(β) = 〈b1, b2〉,
ξ(γ) = 〈g1, g2〉 and ξ(δ) = 〈d1, d2〉. From these inequalities, it is inferred that

b1 < g1 < d1 < g2 < b2 < d2(1)

holds for derivation tree t1 and

d1 < b1 < g1 < d2 < g2 < b2(2)

holds for derivation tree t2.

Now, let φ and ψ be the define-and-use sequences of (α, p, j) for derivation

trees t1 and t2 respectively. Let [ϑ]ω denote the number in ω ∈ DUE(α, p, j)

which encodes the order in which the attribute instance ϑ of (α, p, j) is com-

puted and used in ω. Then, using the inequalities in (1), it follows that φ

can be written as

φ1 · [β]φ · φ2 · [γ]φ · φ3 · [δ]φ · φ4 · φ5 · [γ]φ · φ6 · [β]φ · φ7 · [δ]φ · φ8
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where

φ1 · [β]φ · φ2 · [γ]φ · φ3 · [δ]φ · φ4 = 1 · · ·n

|φ5 · [γ]φ · φ6 · [β]φ · φ7 · [δ]φ · φ8 | = n

with φ1, . . . , φ8 ∈ [1, n]∗ and n = |A1| + · · · + |A8|.
Similarly, using the inequalities in (2) it follows that define-and-use

sequence ψ can be written as

ψ1 · [δ]ψ · ψ2 · [β]ψ · ψ3 · [γ]ψ · ψ4 · ψ5 · [δ]ψ · ψ6 · [γ]ψ · ψ7 · [β]ψ · ψ8

where

ψ1 · [δ]ψ · ψ2 · [β]ψ · ψ3 · [γ]ψ · ψ4 = 1 · · ·n

|ψ5 · [δ]ψ · ψ6 · [γ]ψ · ψ7 · [β]ψ · ψ8 | = n

with ψ1, . . . , ψ8 ∈ [1, n]∗ and n = |A1| + · · · + |A8|.
Thus, |φ| = |ψ| which was the first assertion of the claim. Since trees t1

and t2 are equal modulo the parts below diagrams 3 and 7 it follows that

φ1 = ψ1, so that [β]φ = [δ]ψ. This result, and the observation that (because

E is simple multi-pass)

|φ5 · [γ]φ · φ6 | > | ψ5 |

leads to the second assertion φ �= ψ of the claim.

Proof for case (b).— Suppose that right-hand side symbol Xk of produc-

tion p satisfies condition (1) of Lemma 2 and that right-hand side symbol

Xh of p satisfies condition (1) of Lemma 3. Then, from the fact that Gu is

reduced, the existence of the two derivation trees t3 and t4 in Figure 6 can

be inferred. Let A2 = { β }, A4 = { γ }, and A6 = { δ } for both derivation

trees t3 and t4.
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Figure 6. Derivation trees t3 and t4.
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By construction, the inequalities

b1 < d1 < d2 < b2, b1 < g1 < g2 < b2, g1 < d1 < g2 < d2

hold for derivation tree t3, and the inequalities

g1 < d1 < g2 < d2, g1 < b1 < g2 < b2, b1 < d1 < d2 < b2

hold for derivation tree t4 where it is assumed that ξ(β) = 〈b1, b2〉,
ξ(γ) = 〈g1, g2〉 and ξ(δ) = 〈d1, d2〉. These inequalities imply that

b1 < g1 < d1 < g2 < d2 < b2(3)

holds for derivation tree t3, and

g1 < b1 < d1 < g2 < d2 < b2(4)

holds for derivation tree t4.

Let φ and ψ denote the define-and-use sequences of (α, p, j) for trees t3

and t4 respectively. Then, using the inequalities in (3), it follows that φ can

be written as

φ1 · [β]φ · φ2 · [γ]φ · φ3 · [δ]φ · φ4 · φ5 · [γ]φ · φ6 · [δ]φ · φ7 · [β]φ · φ8

where

φ1 · [β]φ · φ2 · [γ]φ · φ3 · [δ]φ · φ4 = 1 · · ·n

|φ5 · [γ]φ · φ6 · [δ]φ · φ7 · [β]φ · φ8 | = n

with φ1, . . . , φ8 ∈ [1, n]∗ and n = |A1| + · · · + |A6|.
Similarly, using the inequalities in (4) it follows that define-and-use

sequence ψ can be written as

ψ1 · [γ]ψ · ψ2 · [β]ψ · ψ3 · [δ]ψ · ψ4 · ψ5 · [γ]ψ · ψ6 · [δ]ψ · ψ7 · [β]ψ · ψ8
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where

ψ1 · [γ]ψ · ψ2 · [β]ψ · ψ3 · [δ]ψ · ψ4 = 1 · · ·n

|ψ5 · [γ]ψ · ψ6 · [δ]ψ · ψ7 · [β]ψ · ψ8 | = n

with ψ1, . . . , ψ8 ∈ [1, n]∗ and n = |A1| + · · · + |A6|.
Obviously, |φ| = |ψ|, which is the first assertion of the claim. Again, from

the fact that trees t3 and t4 are equal modulo the parts below diagram 1,

φ1 = ψ1 must hold so that [β]φ = [γ]ψ. This result, and the observation that

(because E is simple multi-pass)

|φ5 · [γ]φ · φ6 · [δ]φ · φ7 | > |ψ5 |

proves the second assertion φ �= ψ of the claim. �

In general, Theorem 2 does not hold for simple multi-sweep attribute

grammars. Analysis of the proof of this theorem shows that only in the case

in which condition (3) of both Lemmas 2 and 3 are satisfied, are there basic

linear data structures other than stacks and queues that can be used by a

simple multi-sweep evaluator. This is shown in the next example.

Example 4. Consider the attribute grammar G which has nonterminals

N = {Z, A, B }, terminals Σ = ∅, start symbol Z and productions

P = { p1 : Z → B, p2 : B0 → A1B1A2, p3 : B → ε, p4 : A → ε }.

The sets of attributes of each nonterminal are:

I(Z) = ∅ I(A) = { i } I(B) = { i }
S(Z) = { s } S(A) = { s } S(B) = { s }

Figure 7 shows the relevant aspects of sets R(p1), R(p2), R(p3), and R(p4)

by means of their dependency graphs.
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Attribute grammar G is evaluated by simple multi-sweep evaluator E

whose behaviour is given by the extended visit sequences of Table 3.

Note that for applied occurrence (i, p4, 0), production p2 satisfies condi-

tion (3) of Lemma 2 with respect to symbols A1 and A2, and condition (3) of

Lemma 3 with respect to symbols B1 and A2. Therefore applied occurrence

(i, p4, 0) cannot be allocated to a global stack or a global queue.

Figure 7. Dependency graphs DG(p2), DG(p1), DG(p3), and DG(p4).

Figure 8 shows a derivation tree of this attribute grammar and its evalu-

ation graph. (The evaluation graph of a tree is the graph that represents the

order in which the attribute instances of the tree are computed. It should

not be confused with the dependency graph.) From this graph it can be

seen that applied occurrence (i, p4, 0) can be allocated to a basic linear data

structure with the alternating protocol (see page 42).
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Figure 8. A derivation tree and its evaluation graph.
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Of course, the evaluator given is certainly not the most efficient simple

multi-sweep evaluator for this attribute grammar. However, the attribute

grammar can be extended in a way that forces the specific order in which

the instances of (i, p4, 0) are defined and used. �

Remark. It is possible to transform the attribute grammar in Example 4 into

a simple multi-waddle attribute grammar (see the remark on page 20), by

splitting production p2 into two productions with only two nonterminals in

the right-hand side. Using the attribute grammar obtained by this transfor-

mation, it can be shown further that the result stated in Theorem 2 cannot

be extended to the more restricted class of simple multi-waddle attribute

grammars. �

The following theorem asserts that for simple multi-sweep evaluators, it is

sufficient to consider a proper subset of D for the global storage allocation of

the instances of single-use applied occurrences. In contrast to simple multi-

pass evaluators, however, this subset is not finite.

Theorem 3. Let E be a simple multi-sweep evaluator for an attribute gram-

mar G with single-use applied occurrence (α, p, j). Assume S ⊂ D to be a

set consisting of the basic stack and all other data structures in D such that

D,D′ ∈ S if and only if f(inon) �= f ′(inon) for some n ∈ N
+

where f and f ′ denote the behaviour of D and D′, respectively. Apart from

variants (S is not unique), S is the smallest possible subset of D with the

property that all the attribute instances of (α, p, j) can be allocated to a data

structure in D during evaluation by E if and only if E can allocate them to

a data structure in S.
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Proof. First of all, it will be shown that S satisfies the claimed property

that the attribute instances of (α, p, j) can be allocated to a D ∈ D during

evaluation by E if and only if E can allocate them to a D′ ∈ S. Let (β, p, i)

be the (unique) defined occurrence depending on (α, p, j). Two cases can be

identified.

(1) Occurrences (α, p, j) and (β, p, i) occur in the same subsequence of Vp.—

Then, by Lemma 2, E can always allocate the instances of (α, p, j) to

a global stack and thus, by Lemma 5, to a basic stack. Since the basic

stack is contained in both D and S, it follows that S satisfies the claimed

property.

(2) Occurrences (α, p, j) and (β, p, i) occur in different subsequences of

Vp.— Then each define-and-use sequence ψ ∈ DUE(α, p, j) has the

form 1 · 2 · · ·m · ψ′, where |ψ′| = m for some m ∈ N
+. Now there is

always a D ∈ S for each D′ ∈ D such that f(inon) = f ′(inon) for all

n ∈ N
+ where f and f ′ denote the behaviour of D and D′ respectively.

Thus, by Lemma 4 and the fact that each action sequence obtained from

a sequence ψ ∈ DUE(α, p, j) has the form inon with n = 1
2
|ψ|, there is

always a D ∈ S to which E can allocate the instances of (α, p, j) if E

can allocate them to a D′ ∈ D. And since S ⊂ D, it is clear that S

satisfies the claimed property.

The assertion that S (apart from variants) is the smallest subset of D

which satisfies the claimed property, is proved by construction of an attribute

grammar G′ with a simple multi-sweep evaluator E ′ for any D ∈ S such that

E ′ cannot allocate the instances of a single-use applied occurrence of G′ to

any other D′ ∈ S than D.
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Let D ∈ S with protocol p and let n ∈ N
+.

(1) Construction of attribute grammar G′.— G′ = (Gu, A, V, R) has start

symbol Z, nonterminals N = {Z,A,B}, and terminals Σ = {a}. The

production rules in set P are, for all k ∈ [1, n], given as

qk : Z → B1 · · ·Bk qn+1 : B → A qn+2 : A → a

The sets of attributes for the nonterminals of attribute grammar G′

are A(Z) = A(B) = ∅ and A(A) = {α, β }, where I(A) = {α } and

S(A) = { β }. The sets of semantic rules are, for all k ∈ [1, n], given as

R(qk) = ∅

R(qn+1) = { (α, qn+1, 1) = c }

R(qn+2) = { (β, qn+2, 0) = (α, qn+2, 0) }

where c ∈ V (α) and V (β) = V (α). This concludes the description of

attribute grammar G′.

(2) Construction of simple multi-sweep evaluator E ′ for G′.— Simple multi-

sweep evaluator E ′ for attribute grammar G′ has, for all k ∈ [1, n], the

following extended visit-sequences

Vqk
= 〈∅, ∅, visit1(B1), ∅, . . . , ∅, visit1(Bk), ∅, ∅〉

〈∅, ∅, visit2(Bp(iko0)), ∅, . . . , ∅, visit2(Bp(ikok−1)), ∅, ∅〉

Vqn+1 = 〈∅, { (α, qn+1, 1) }, visit1(A), ∅, ∅〉
〈∅, ∅, visit2(A), { (β, qn+1, 1) }, ∅, 〉

Vqn+2 = 〈{ (α, qn+2, 0) }, ∅〉 〈∅, { (β, qn+2, 0) }〉
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It should be clear that the set of define-and-use sequences of (α, qn+2, 0)

induced by these extended visit-sequences can be given as

DUE(α, qn+2, 0) = { 1 · · ·k · p(iko0) · · · p(ikok−1) | k ∈ [1, n] }.

Thus, by Definition 11 and Lemma 4, E ′ is such that the instances of

(α, qn+2, 0) can always be allocated to data structure D. This ends the

description of evaluator E ′.

By construction, the behaviour required for a D′ ∈ S such that E ′ can allocate

the instances of (α, qn+2, 0) to D′ can be made as close to the behaviour of

D as wished, provided n is chosen sufficiently large. So when n takes on

arbitrarily large values, that is when n → ∞, E ′ cannot allocate the instances

of (α, qn+2, 0) to any D′ ∈ S other than D. (Note that n stays finite when

n approaches infinity so that G′ and E ′ are always properly defined.) This

proves that S (apart from variants) is the smallest subset of D which satisfies

the claimed property. �

Since they are more general than simple multi-sweep evaluators, the ques-

tion arises whether for simple multi-visit evaluators it remains sufficient to

consider a proper subset of D for the global storage allocation of the in-

stances of single-use applied occurrences. The following theorem settles this

question.

Theorem 4. Let E be a simple multi-visit evaluator for an attribute gram-

mar G with single-use applied occurrence (α, p, j). There is no subset V ⊂ D

which satisfies the following property: all the attribute instances of (α, p, j)

can be allocated to a data structure in D during evaluation by E if and only

if E can allocate them to a data structure in V.

61



Proof. The theorem is proved by construction of an attribute grammar G′

with a simple multi-visit evaluator E ′ for any D ∈ D such that E ′ cannot

allocate the instances of a single-use applied occurrence of G′ to any other

D′ ∈ D than D.

Let D ∈ D with protocol p, and let n ∈ N
+.

(1) Construction of attribute grammar G′.— Assume S is the set of all

sequences σ ∈ { i, o }+ for which p(σ) is defined and #i(σ) ≤ n. (Note

that #i(σ) ≥ 1 for all σ ∈ S.) Attribute grammar G′ = (Gu, A, V, R)

has start symbol Z, nonterminals N = {Z,A,B}, terminals Σ = {a},

and productions P , for all σ ∈ S, consisting of

qσ : Z → B1 · · ·B#i(σ) q1 : B → A q2 : A → a

The sets of attributes for the nonterminals are A(Z) = A(B) = ∅ and

A(A) = {α, β } where I(A) = {α } and S(A) = { β }. The sets of

semantic rules are, for all σ ∈ S, given as

R(qσ) = ∅

R(q1) = { (α, q1, 1) = c }

R(q2) = { (β, q2, 0) = (α, q2, 0) }

where c ∈ V (α) and V (β) = V (α). This concludes the description of

attribute grammar G′.

(2) Construction of simple multi-visit evaluator E ′ for G′.— Simple multi-

visit evaluator E ′ for attribute grammar G′ is, for all σ ∈ S, specified

by the extended visit-sequences of Table 4. Assume σ = w1 · · ·wm with

w2j ∈ { o }+ and w2j−1 ∈ { i }+ for all j ∈ [1, �1
2
m�].
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Although perhaps not immediately obvious, it is not difficult to see

that each define-and-use sequence of (α, q2, 0) has the structure

1 · · ·#i(w1)·
p(w1 · o0) · · ·p(w1 · o|w2|−1)·

(#i(w1 · w2) + 1) · · ·#i(w1 · · ·w3)·
p(w1 · · ·w3 · o0) · · ·p(w1 · · ·w3 · o|w4|−1)·

· · ·
(#i(w1 · · ·wm−1) + 1) · · ·#i(w1 · · ·wm)

or

1 · · ·#i(w1)·
p(w1 · o0) · · ·p(w1 · o|w2|−1)·

(#i(w1 · w2) + 1) · · ·#i(w1 · · ·w3)·
· · ·

p(w1 · · ·wm−1 · o0) · · · p(w1 · · ·wm−1 · o|wm|−1)

so that, by Definition 11 and Lemma 4, E ′ can always allocate the

instances of (α, q2, 0) to data structure D. This ends the description of

evaluator E ′.

As can be seen from the construction above, the behaviour required for a

D′ ∈ D such that E ′ can allocate the instances of (α, q2, 0) to D′, can be

made as close to the behaviour of D as wished by taking n large enough.

Thus when n → ∞, evaluator E ′ (which together with attribute grammar

G′ is properly defined because n stays finite) cannot allocate the instances

of (α, q2, 0) to any D′ ∈ D other than D. This concludes the proof of the

theorem. �
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As a final comment, observe that for simple multi-visit evaluators it is

necessary and sufficient to consider D for the global storage allocation of

the instances of single-use applied occurrences: necessary by Theorem 4, and

sufficient by the characterization of D.
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CHAPTER FOUR

————–

Global Storage Allocation of Multi-use

Applied Occurrences

——————−−——————

Results were presented in Chapter 3 for the global storage allocation of the

attribute instances of single-use applied occurrences in simple multi-X eval-

uators where X ∈ { pass, sweep, visit }. This chapter extends these results

in two ways, firstly by generalizing to multi-use applied occurrences and

secondly by generalizing to simple multi-visit evaluators.

Generalization to multi-use applied occurrences. — The generalization

to multi-use applied occurrences is achieved using the idea of reallocation.

Consider an attribute grammar with a simple multi-visit evaluator E. Let

set (β, p, i) to f((α, p, j))

set (γ, p, k) to g((δ, p, l), (α, p, j))

be all the evaluation rules of E using the instances of multi-use applied

occurrence (α, p, j). Suppose that each instance of (α, p, j) is used to compute

an instance of (β, p, i) before it is used to compute an instance of (γ, p, k).
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Let D1 and D2 denote two data structures of D. Assume, as illustrated

in Figure 9, that each instance of (α, p, j) can be allocated to D1 after its

computation and reallocated to D2 (that is, removed from D1 and stored in

D2) immediately after it is used to compute an instance of (β, p, i). Then

each instance of (α, p, j) has a single-use storage item for D1 and a single-

use storage item for D2. Each single-use storage item, in turn, can be shown

(using the proof of Theorem 7) to be seen as an instance of a single-use applied

occurrence. Thus, (α, p, j) can be thought of as being composed of a single-

use applied occurrence whose instances are allocated to D1, and a single-use

applied occurrence whose instances are allocated to D2. This observation

forms the crux of the idea of reallocation, and ipso facto of the generalization

to multi-use applied occurrences. All results presented in Chapter 3 will be

generalized to multi-use applied occurrences.

Figure 9. Schematic representation of the reallocation idea.

Generalization to simple multi-visit evaluators. — Theorem 1 will be

generalized to multi-use applied occurrences as well as to simple multi-visit

evaluators. To realize this generalization, some additional notations and

concepts will be presented.
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Firstly, the intuitive meaning of the concept (a, b)-allocated will be ex-

plained. Let E be a simple multi-visit evaluator for an attribute grammar

with a multi-use applied occurrence (α, p, j). Let (α, p, j)k for k > 0 denote

the defined occurrence (β, p, i) whose instances are computed by E using the

instances of (α, p, j) for the k-time. Let (α, p, j)k for k = 0 denote applied

occurrence (α, p, j) itself. By saying that the attribute instances of (α, p, j)

are (a, b)-allocated to a data structure D during evaluation by E where a < b,

a particular use of D by E for the storage of the instances of (α, p, j) is meant.

Depending on integer a two cases are distinguished.

(1) Integer a = 0. — In this case D is used by E in the following manner.

Each instance of (α, p, j), when computed, is stored in D; when the

directly dependent instances of (α, p, j)1, . . . , (α, p, j)b are computed,

the instance is accessed in D; just after the computation of the directly

dependent instance of (α, p, j)b, it is removed from D.

(2) Integer a > 0. — In this case D is used by E in the following manner.

Just after each instance of (α, p, j) is used to compute the directly de-

pendent instance of (α, p, j)a, it is stored in D; when the directly depen-

dent instances of (α, p, j)a+1, . . . , (α, p, j)b are computed, it is accessed

in D; just after the computation of the directly dependent instance of

(α, p, j)b, it is removed from D.

Note that data structure D can no longer be a basic linear data structure

when b > a+ 1.

Having explained the intuitive meaning of the concept (a, b)-allocated,

it is now possible to precisely define what it means to state that the in-

stances of an applied occurrence (α, p, j) can be (a, b)-allocated to a global
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variable, stack, or queue during evaluation by a simple multi-visit evaluator.

Definition 8, for example, can be stated as follows:

A group A of attribute instances of (α, p, j) can be (a, b)-allocated

to a global queue if for all γ ∈ A, with ξ(γ) = 〈g0, . . . , gn〉, the

following holds: there is no δ ∈ A with ξ(δ) = 〈d0, . . . , dn〉, such

that ga < da and da+1 < gb.

Similarly, it is also possible to precisely define what it means to state that

the instances of an applied occurrence can be (a, b)-allocated to a basic lin-

ear data structure during evaluation by a simple multi-visit evaluator. The

reader should have no difficulty in transcribing Definitions 6, 7, and 10 as

well as proving the analogue of Lemmas 1 and 4 for the (a, b)-allocation of the

instances of a multi-use applied occurrence, where b should be taken as a+1

for the transcriptions of Definition 10 and Lemma 4. Note that the (0, 1)-

allocation of a multi-use applied occurrence (α, p, j) is already considered in

Chapter 3.

At this point it is straightforward to modify Lemmas 2 and 3 in such a way

that it is decidable whether, given some simple multi-sweep evaluator, the

instances of a multi-use applied occurrence can be (a, a+ 1)-allocated to a

global stack or a global queue. However, instead of so doing, following on from

Engelfriet and De Jong in [10] two lemmas shall be developed which are valid

for the more general class of simple multi-visit evaluators. This development

starts with the introduction of the concept of subtree information.

Let E be a simple multi-visit evaluator for an attribute grammar G with

a multi-use applied occurrence (α, p, j). Denote by t a derivation tree of G

and by n a node of t. Assume (β, p, k) = (α, p, j)i and (γ, p, l) = (α, p, j)i+1.

70



Definition 13. The subtree information SIi(α, p, j) for the (i, i+ 1)-alloca-

tion of (α, p, j) is a set of tuples (X, (a, b)) with X ∈ N , a, b ∈ [1, φ(X)],

and a ≤ b. A tuple (X, (a, b)) ∈ SIi(α, p, j) when there is a subtree t(n), n

labelled by X, that has a node m at which production p is applied. This

subtree is evaluated by E (as part of t) in such a way that the instance of

(α, p, j)i at node mk is computed during the a-th visit to n and the instance

of (α, p, j)i+1 at node ml is computed during the b-th visit to n. �

To express the constructability of set SIi(α, p, j) the following result is

presented using the extended visit sequences of evaluator E. For all elements

a in Vp, let a ∈+ Vp(n) denote that a occurs in sequence Vp(n). For all sets

Ip,n(Xm), Sp,n(Xm) ∈+ Vp(n), let (δ, p,m) ∈∗ Vp(n) denote that occurrence

(δ, p,m) ∈ Ip,n(Xm) or (δ, p,m) ∈ Sp,n(Xm).

Lemma 7. SIi(α, p, j) = SIi
′(α, p, j), where SIi

′(α, p, j) is defined by steps

(1)-(3) as follows.

(1) Basis. — If (α, p, j)i ∈∗ Vp(a) and (α, p, j)i+1 ∈∗ Vp(b), then tuple

(X0, (a, b)) ∈ SIi
′(α, p, j) where p is assumed to be X0 → X1 · · ·Xn.

(2) Projection. — If (X, (r, s)) ∈ SIi
′(α, p, j) and there is a production

q : Y0 → Y1 · · ·Ym with nonterminal Yk = X for some k ∈ [1, m] such

that visitr(Yk) ∈+ Vq(a) and visits(Yk) ∈+ Vq(b) holds, then tuple

(Y0, (a, b)) ∈ SIi
′(α, p, j).

(3) Closure. — Nothing is in SIi
′(α, p, j) except those tuples which are in

SIi
′(α, p, j) by applying the basis step (1) and the projection step (2)

on a finite number of occasions.

Proof. To prove SIi(α, p, j) ⊆ SIi
′(α, p, j), assume (X, (a, b)) ∈ SIi(α, p, j).

Then by Definition 13, there is a subtree t(n) with root n labelled by X and a
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node m at which production p is applied, such that the instance of (α, p, j)i

at node mk and the instance of (α, p, j)i+1 at node ml are computed during

the a-th and the b-th visit to node n respectively. Let λ be the length of the

path from node n to node m in t(n). Now (X, (a, b)) ∈ SIi
′(α, p, j) follows by

induction on path length λ.

To prove SIi
′(α, p, j) ⊆ SIi(α, p, j), assume (X, (a, b)) ∈ SIi

′(α, p, j). If

tuple (X, (a, b)) is added to set SIi
′(α, p, j) by application of the basis step,

then it is clear that tuple (X, (a, b)) ∈ SIi(α, p, j) because Gu is reduced.

Now assume that tuple (X, (a, b)) is added to SIi
′(α, p, j) by application of

the projection step, and that all elements already in SIi
′(α, p, j) are also

elements of SIi(α, p, j). Then, again by the fact that Gu is reduced, it can

be shown that tuple (X, (a, b)) ∈ SIi(α, p, j). �

Example 5. Referring to Example 1, by the basis step and the projection

step of Lemma 7, it is found that

SI0(α, p2, 1) = { (Z, (1, 1)), (A, (1, 1)) } = SI0(α, p3, 1),

SI1(α, p2, 1) = { (Z, (1, 2)), (A, (1, 2)) } = SI1(α, p3, 1),

SI2(α, p2, 1) = { (Z, (2, 2)), (A, (2, 2)) },

and SI0(α, p1, 1) = { (Z, (1, 2)) }. �

Remark. In the case that E is simple multi-sweep (as in Example 1), it

can be seen from Lemma 7 that tuple (X, (a, b)) ∈ SIi(α, p, j) if and only if

(α, p, j)i ∈∗ Vp(a), (α, p, j)i+1 ∈∗ Vp(b) and X ⇒∗ γX0δ for some γ, δ ∈ V ∗

where p is X0 → X1 · · ·Xn. �

Now it will be shown how the subtree information SIi(α, p, j) is used to

decide whether the attribute instances of an applied occurrence (α, p, j) can
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be (i, i+1)-allocated to a global stack or queue during evaluation by a simple

multi-visit evaluator E.

Lemma 8. Let E be a simple multi-visit evaluator for an attribute grammar

G and let p : X0 → X1 · · ·Xn ∈ P with (α, p, j) ∈ AO(p) multi-use. The

attribute instances of (α, p, j) cannot be (i, i + 1)-allocated to a global stack

during evaluation by E if and only if at least one of the following conditions

is satisfied.

(1) There exists a tuple (Xk, (a, b)) ∈ SIi(α, p, j), for some k ∈ [1, n], such

that

set(α, p, j)i < visita(Xk) < set(α, p, j)i+1 < visitb(Xk) in Vp.

(2) There exists a tuple (Xk, (a, b)) ∈ SIi(α, p, j), for some k ∈ [1, n], such

that

visita(Xk) < set(α, p, j)i < visitb(Xk) < set(α, p, j)i+1 in Vp.

(3) There exist a production q : Y0 → Y1 · · ·Ym, and tuples (Yk, (a, b)),

(Yl, (r, s)) ∈ SIi(α, p, j) for some distinct k, l ∈ [1, m], such that

visita(Yk) < visitr(Yl) < visitb(Yk) < visits(Yl) in Vq. �

Lemma 9. Let E be a simple multi-visit evaluator for an attribute grammar

G and let p : X0 → X1 · · ·Xn ∈ P with (α, p, j) ∈ AO(p) multi-use. The

attribute instances of (α, p, j) cannot be (i, i + 1)-allocated to a global queue

during evaluation by E if and only if at least one of the following conditions

is satisfied.
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(1) There exists a tuple (Xk, (a, b)) ∈ SIi(α, p, j), for some k ∈ [1, n], such

that

set(α, p, j)i < visita(Xk) and visitb(Xk) < set(α, p, j)i+1 in Vp.

(2) There exists a tuple (Xk, (a, b)) ∈ SIi(α, p, j), for some k ∈ [1, n], such

that

visita(Xk) < set(α, p, j)i and set(α, p, j)i+1 < visitb(Xk) in Vp.

(3) There exist a production q : Y0 → Y1 · · ·Ym, and tuples (Yk, (a, b)),

(Yl, (r, s)) ∈ SIi(α, p, j) for some distinct k, l ∈ [1, m], such that

visita(Yk) < visitr(Yl) and visits(Yl) < visitb(Yk) in Vq. �

The proofs of these lemmas are omitted since they are in fact natural

generalizations of Lemmas 2 and 3. The remarks made about the alloca-

tion of a temporary single-use applied occurrence also apply here for the

(i, i + 1)-allocation of a multi-use applied occurrence (α, p, j) where (α, p, 1)i

and (α, p, 1)i+1 occur within the same sequence of Vp. Again, Lemmas 8 and

9 show that it is rational to consider global queues as well as global stacks

for the (i, i + 1)-allocation of a multi-use applied occurrence (α, p, j) with

(α, p, 1)i and (α, p, 1)i+1 in distinct sequences of Vp.

Example 6. Consider Examples 1 and 5. With the help of Lemmas 8, 9,

and the analogue of Lemma 1, the allocations of Table 5 can be found for

the instances of (α, p1, 1), (α, p2, 1), and (α, p3, 1) during evaluation by E. �
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Applied
(0,1)-Allocation (1,2)-Allocation (2,3)-Allocation

Occurrence

(α, p1, 1) global variable

(α, p2, 1) global variable global stack global stack

(α, p3, 1) global variable global queue

Table 5. Allocation of applied occurrences (α, p1, 1),

(α, p2, 1), and (α, p3, 1).

From the explanation at the beginning of this chapter, it should be clear

that the (i, i + 1)-allocation for i > 0 of the instances of a multi-use ap-

plied occurrence (α, p, j) during evaluation of a simple multi-visit evaluator

E is based on reallocation. That is, after the computation of an instance of

(α, p, j)i, evaluator E reallocates that instance of (α, p, j) which is used for

this computation from Di to Di+1, where Di and Di+1 denote the data struc-

tures to which the instances of (α, p, j) are (i− 1, i)- and (i, i + 1)-allocated

respectively. This leads to a simple modification of the evaluator of which

the details are presented in Example 8.

To appreciate the importance of the reallocations, the following results

are presented. In general terms they show that, irrespective of the class of

simple multi-visit evaluators used, there is no need to consider different data

structures for the global storage allocation of multi-use applied occurrences

than for the global storage allocation of single-use applied occurrences when

using reallocations.

Theorem 5. Let E be a simple multi-pass evaluator for an attribute gram-

mar G with multi-use applied occurrence (α, p, j). All the attribute instances

of (α, p, j) can be (i, i + 1)-allocated to a basic linear data structure in D

during evaluation by E if and only if E can (i, i+1)-allocate them to a global

stack or to a global queue. �
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Theorem 6. Let E be a simple multi-sweep evaluator for an attribute gram-

mar G with multi-use applied occurrence (α, p, j). Assume S ⊂ D to be a set

consisting of the basic stack and all other data structures in D such that

D,D′ ∈ S if and only if f(inon) = f ′(inon) for some n ∈ N
+

where f and f ′ denote the behaviour of D and D′ respectively. Apart from

variants (S is not unique), S is the smallest possible subset of D with the

property that all the attribute instances of (α, p, j) can be (i, i + 1)-allocated

to a data structure in D during evaluation by E if and only if E can (i, i+1)-

allocate them to a data structure in S. �

Theorem 7. Let E be a simple multi-visit evaluator for an attribute gram-

mar G with multi-use applied occurrence (α, p, j). There is no subset V ⊂ D

with the following property: all the attribute instances of (α, p, j) can be

(i, i + 1)-allocated to a data structure in D during evaluation by E if and

only if E can (i, i+ 1)-allocate them to a data structure in V. �

The principal idea in the proofs of these theorems is the construction of

an attribute grammar G′ with an evaluator E ′ such that E ′ is simple multi-

X if E is simple multi-X, and such that E ′ can allocate the instances of

a single-use applied occurrence (α, p, j)′ to a D ∈ D if and only if E can

(i, i + 1)-allocate the instances of (α, p, j) to D. Once that construction is

established, the proofs of Theorems 5, 6, and 7 are greatly simplified. All that

is left to show is that the data structures claimed necessary for the (i, i+ 1)-

allocation of the instances of (α, p, j) are the same as the data structures

necessary for the global storage allocation of the instances of (α, p, j)′. This

follows, depending on the theorem to be proved, from Theorem 2, 3, or 4.

Thus, each proof consists of three parts: (1) the construction of attribute
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grammar G′, (2) the construction of evaluator E ′, and (3) the proof of the,

by construction, remaining claim.

Proof of Theorem 5. The construction of attribute grammar G′ is as follows.

Attribute grammar G′ has grammar G′
u entirely similar to Gu, except for sets

N and P . Set N has a new nonterminal Y, and set P has a new production

q : Y → ε as well as a modified production p. The way in which production

p : X0 → X1 · · ·Xn is modified depends on integer i.

(1) Integer i = 0. — In this case p is modified by the following construc-

tion, where it is assumed that α ∈ Am(Xj) in E. Supposing that the

direction of the m-th pass is the same for both E ′ as E, it modifies

p in such a way that, for any node x at which p is applied, the first

nonterminal child of x which is visited by E ′ after the m-th visit to

node xj is the one labelled by Y .

if j = 0

then if direction d(m) = L in E

then replace X1 in p by Y X1

else replace Xn in p by XnY

fi

else if direction d(m) = L in E

then replace Xj in p by XjY

else replace Xj in p by Y Xj

fi

fi
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(2) Integer i > 0. — In this case p is modified by the construction below,

where it is assumed that (α, p, j)i = (β, p, k) and β ∈ Am(Xk) in E.

Supposing that the direction of the m-th pass is the same for both E ′

as E, it modifies p in such a way that, for any node x at which p is

applied, the last nonterminal child of x which is visited by E ′ before

the m-th visit to node xk is the one labelled by Y .

if k = 0

then if direction d(m) = L in E

then replace Xn in p by XnY

else replace X1 in p by Y X1

fi

else if direction d(m) = L in E

then replace Xk in p by Y Xk

else replace Xk in p by XkY

fi

fi

Attribute grammar G′ has the sets of attributes for the nonterminals of G

extended with set A(Y ) given as {α′, α′′ } where V (α′) and V (α′′) are taken

as V (α). The sets of semantic rules of G′ are the same as those of G with two

exceptions. One is, of course, set R(q) defined as { (α′′, q, 0) = (α′, q, 0) },
and the second is set R(p). Let X0 → X ′

1 · · ·X ′
n+1 be the modified p with

X ′
l = Y for some l ∈ [1, n+1]. Set R(p) has semantic rule (α′, p, l) = (α, p, j)

added to it, and (α, p, j) replaced by (α′′, p, l) in the semantic rule defining

(α, p, j)i+1.
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Evaluator E ′ for attribute grammar G′ is obtained from E by an ex-

tension step and a modification step. Assume that (α, p, j)i = (β, p, k) and

β ∈ Am(Xk) in E. The extension step ensures that, for any node y la-

belled Y , the instances α′ and α′′ at y are computed during the m-th visit

of E ′ to y. It consists of the extension of E with integer φ(Y ), partition

A1(Y ), . . . , Aφ(Y )(Y ) of A(Y ), sequence vq = vq(1) · · · vq(φ(Y )), and set E(q).

These are defined by the following construction.

set φ(Y ) to φ(X0);

for each u ∈ [1, φ(Y )]

do if u = m then set Au(Y ) to {α′, α′′ }
else set Au(Y ) to ∅

fi;

set vq(u) to ε

od;

set E(q) to { set (α′′, q, 0) to (α′, q, 0) }

The modification step places set E(p) in conformity with set R(p), and

sequence vp in conformity with mapping d specifying the direction of the

passes of E. The modification of E(p) follows at once from R(p), and the

modification of vp = vp(1) · · · vp(φ(X0)) by the construction below.

for each i ∈ [1, φ(X0)]

do if direction d(i) = L in E

then change vp(i) into visiti(X
′
1) · · · visiti(X

′
n+1)
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else change vp(i) into visiti(X
′
n+1) · · · visiti(X

′
1)

fi

od;

Now, by construction, E ′ is a simple multi-pass evaluator with the property

that the order in which the instances of (α′′, p, l) are computed and used is

exactly the same as the order in which E stores and removes the instances of

(α, p, j) on some D ∈ D when they are (i, i + 1)-allocated to D. Therefore,

it is easily seen that the instances of (α, p, j) can be (i, i + 1)-allocated to a

D ∈ D during evaluation by E if and only if the instances of (α′′, p, l) can

be allocated to D during evaluation by E ′.

So the theorem is proved if it can be shown that, during evaluation by

E ′, the instances of (α′′, p, l) can be allocated to a data structure in D if and

only if they can be allocated to a global stack or a global queue. And this

follows from Theorem 2 because E ′ is simple multi-pass. �

Proof of Theorem 6. The construction of attribute grammar G′ is entirely

similar to that one of the previous proof, except for production p. Here p is

modified to X0 → X1 · · ·XnY .

Evaluator E ′ for attribute grammar G′ is obtained from E is the same way

as E ′ in the proof of Theorem 5 with one difference, namely the modification

of sequence vp = vp(1) · · · vp(φ(X0)). Two cases are distinguished depending

on the value of integer i.

(1) Integer i = 0. — In this case the modification of sequence vp is specified

by the following construction. It modifies sequence vp in such a way

that, for any node x at which p is applied, node xn+1 with label Y is
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the first nonterminal child of x which is visited by E ′ after xj has been

visited.

for each u ∈ [1, φ(X0)]

do if j = 0

then change vp(u) to visitu(Y ) · vp(u)

else change visitu(Xj) in vp(u) to visitu(Xj) · visitu(Y )

fi

od

(2) Integer i > 0. — In this case the modification of vp is specified by

the following construction where it is assumed that (α, p, j)i = (β, p, k)

in E. It modifies sequence vp such that, for any node x at which p is

applied, node xn+1 with label Y is the last nonterminal child of x which

is visited by E ′ before xk is visited.

for each u ∈ [1, φ(X0)]

do if k = 0

then change vp(u) to vp(u) · visitu(Y )

else change visitu(Xj) in vp(u) to visitu(Y ) · visitu(Xj)

fi

od

By construction, E ′ is a simple multi-sweep evaluator with the property that

the order in which the instances of (α′′, p, n + 1) are computed and used is

exactly the same as the order in which E stores and removes the instances
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of (α, p, j) on some D ∈ D when they are (i, i + 1)-allocated to D. That is,

the instances of (α′′, p, n+ 1) can be allocated to a D ∈ D during evaluation

by E ′ if and only if the instances of (α, p, j) can be (i, i + 1)-allocated to D

during evaluation by E.

Thus, to complete the proof, it needs only be shown that, during evalua-

tion by E ′, the instances of (α′′, p, n+1) can be allocated to a data structure

in D if and only if they can be allocated to a data structure in S. And that

follows from Theorem 3 (because E ′ is simple multi-sweep). �

Proof of Theorem 7. Attribute grammar G′ is entirely similar to G′ as pre-

sented in the proof of Theorem 6.

Evaluator E ′ for attribute grammar G′ is again obtained from E by an

extension step and a modification step. The extension step extends E with

integer φ(Y ) = 1, partition A1(Y ) = A(Y ), sequence vq = vq(1) = ε, and set

E(q) = { set (α′′, q, 0) to (α′, q, 0) }.

The modification step consists of the modification of set E(p) as in the proof

of Theorem 5, and of the modification of sequence vp. The modification of

sequence vp = vp(1) · · · vp(φ(X0)) depends on integer i.

(1) Integer i = 0. — In this case the modification of vp is specified by the

following construction, where it is assumed that α ∈ Am(Xj) in E. It

modifies vp in such a way that, for any node x at which p is applied,

node xn+1 with label Y is the first nonterminal child of x which is

visited by E ′ after the m-th visit to xj .

if j = 0
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then change vp(m) to visit1(Y ) · vp(m)

else for each u ∈ [1, φ(X0)]

do if visitm(Xj) occurs in vp(u)

then replace visitm(Xj) by visitm(Xj) · visit1(Y )

fi

od

fi

(2) Integer i > 0. — In this case the modification of vp is specified by the

following construction, where it assumed that (α, p, j)i = (β, p, k) and

β ∈ Am(Xk) in E. It modifies vp such that, for any node x at which

p is applied, node xn+1 with label Y is the last nonterminal child of x

which is visited by evaluator E ′ before the m-th visit to xk.

if k = 0

then change vp(m) to vp(m) · visit1(Y )

else for each u ∈ [1, φ(X0)]

do if visitm(Xk) occurs in vp(u)

then replace visitm(Xk) by visit1(Y ) · visitm(Xk)

fi

od

fi

It should be clear that E ′ is a simple multi-visit evaluator with the property

that the order in which the instances of (α′′, p, n+1) are computed and used

is exactly the same as the order in which E stores and removes the instances
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of (α, p, j) on some D ∈ D when they are (i, i+ 1)-allocated to D. Thus the

instances of (α, p, j) can be (i, i + 1)-allocated to a data structure D ∈ D

during evaluation by E if and only if the instances of (α′′, p, n + 1) can be

allocated to D during evaluation by E ′.

In other words, all that is needed to complete the proof is the demon-

stration that, during evaluation by E ′, there is no V ⊂ D with the property

that the instances of (α′′, p, n + 1) can be allocated to a data structure in

D if and only if they can be allocated to a data structure in V. This again

follows from Theorem 4. �

Additional evidence of the importance of reallocations is the fact that

without reallocations there are linear data structures required with more

than one protocol for the (a, b)-allocation of multi-use applied occurrences,

where b > a+ 1. As applied occurrence (α, p3, 1) will show in Example 7, it is

not sufficient to simply extend the basic linear data structures with an access

operation a : Σ → Σ × Data given as a(〈δ, M〉) = (〈δ, M〉, ∂) which, when

called with current contents 〈δ, M〉, invokes a program that delivers item ∂

if (∂, p(δ)) ∈ M , and aborts if M is empty. To (0, 2)-allocate the instances of

(α, p3, 1) to a linear data structure, the access operation a requires the basic

stack protocol and the output operation o requires the basic queue protocol.

The disadvantage of the reallocations is that they increase evaluation

time. For this reason, it is important to reduce the number of reallocations

for a multi-use applied occurrence. With this aim the following lemmas are

presented (of which Lemma 10 generalizes Lemma 8).

Lemma 10. Let E be a simple multi-visit evaluator for an attribute gram-

mar G and let p : X0 → X1 · · ·Xn ∈ P with (α, p, j) ∈ AO(p) multi-use.

The attribute instances of (α, p, j) can be (a, b+1)-allocated to a global stack
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during evaluation by E if and only if none of the following conditions is

satisfied.

(1) There exists a tuple (Xk, (d, e)) in
⋃b

i=a SIi(α, p, j) for some k ∈ [1, n]

such that for some i ∈ [a, b],

set(α, p, j)i < visitd(Xk) < set(α, p, j)i+1 < visite(Xk) in Vp.

(2) There exists a tuple (Xk, (d, e)) in
⋃b

i=a SIi(α, p, j) for some k ∈ [1, n]

such that for some i ∈ [a, b],

visitd(Xk) < set(α, p, j)i < visite(Xk) < set(α, p, j)i+1 in Vp.

(3) There exist a production q : Y0 → Y1 · · ·Ym, and tuples (Yk, (d, e)) and

(Yl, (r, s)) in
⋃b

i=a SIi(α, p, j) for some distinct k, l ∈ [1, m] such that

visitd(Yk) < visitr(Yl) < visite(Yk) < visits(Yl) in Vq.

Proof. The part of the proof showing the necessity of the conditions requires

careful consideration; a good reason to present it here. The other part of

the proof, however, follows the same line of reasoning as the related part of

Lemma 11.

To show the necessity of the conditions (1)-(3), let t be a derivation tree

with x and y denoting two of its nodes at which p is applied. Denote by

γ the instance of (α, p, j) at node xj and by δ the instance of (α, p, j) at

node yj where ξ(γ) = 〈g0, . . . , gu〉 and ξ(δ) = 〈d0, . . . , du〉. Assume that the

instances of (α, p, j) cannot be (a, b + 1)-allocated to a global stack during

evaluation by E. Then, by definition, attribute grammar G must have a

derivation tree such as t where ga < da < gi < db+1 for some i ∈ [a+1, b+1].

85



Hence there exists a w ∈ [a, b] such that ga < dw < gi < dw+1, and so there

exists a v ∈ [a, b] such that gv < dw < gv+1 < dw+1. Now three cases are

distinguished.

(a) Node y is a descendant of node xk or xk itself for some k ∈ [1, n].—

Then there must be a tuple (Xk, (d, e)) in set SIw(α, p, j) such that

set(α, p, j)v < visitd(Xk) < set(α, p, j)v+1 < visite(Xk) in Vp. This

implies that condition (1) is satisfied.

(b) Node x is a descendant of node yk or yk itself for some k ∈ [1, n].—

Then there must be a tuple (Xk, (d, e)) in set SIv(α, p, j) such that

visitd(Xk) < set(α, p, j)w < visite(Xk) < set(α, p, j)w+1 in Vp. This

implies that condition (2) is satisfied.

(c) Nodes x and y are incomparable.— Let z be the root of the smallest tree

containing both x and y, and let q : Y0 → Y1 · · ·Ym be the production

applied at z. Assume that x is a descendant of node zl or zl itself and

y is a descendant of node zk or zk itself, for distinct k, l ∈ [1, m]. Then

there are two tuples (Yk, (d, e)), (Yl, (r, s)) ∈
⋃b

i=a SIi(α, p, j) such that

visitd(Yk) < visitr(Yl) < visite(Yk) < visits(Yl) in Vq. That implies

that condition (3) is satisfied. �

Lemma 11. Let E be a simple multi-visit evaluator for an attribute gram-

mar G and let p : X0 → X1 · · ·Xn ∈ P with (α, p, j) ∈ AO(p) multi-use.

The attribute instances of (α, p, j) can be (a, b+1)-allocated to a global queue

during evaluation by E if and only if E can (a, b)-allocate them to a global

queue and none of the following conditions is satisfied.

(1) There exists a tuple (Xk, (d, e)) in SIb(α, p, j) for some k ∈ [1, n] such

that
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visitd(Xk) < set(α, p, j)a+1 < visite(Xk) in Vp.

(2) There exists a tuple (Xk, (d, e)) in SIa(α, p, j) for some k ∈ [1, n] such

that

set(α, p, j)b < visite(Xk) < set(α, p, j)b+1 in Vp.

(3) There exist a production q : Y0 → Y1 · · ·Ym and tuples (Yk, (d, e)) in

SIa(α, p, j) and (Yl, (r, s)) in SIb(α, p, j) for some distinct k, l ∈ [1, m]

such that

visitr(Yl) < visite(Yk) < visits(Yl) in Vq.

Proof. Let t be a derivation tree with x and y denoting two of its nodes

at which production p is applied. The instance of (α, p, j) at node xj is

denoted by γ and the instance of (α, p, j) at node yj is denoted by δ where

ξ(γ) = 〈g0, . . . gu〉 and ξ(δ) = 〈d0, . . . du〉.
Clearly the fact that during evaluation by E the instances of (α, p, j)

can be (a, b + 1)-allocated to a global queue implies that they can be (a, b)-

allocated to a global queue. So essentially two things have to be proved,

namely that:

(1) One of the conditions (1)-(3) is satisfied if during evaluation by E the

instances of (α, p, j) can be (a, b)-allocated to a global queue but not

(a, b + 1)-allocated to a global queue.

(2) The instances of (α, p, j) cannot be (a, b+1)-allocated to a global queue

during evaluation by E if one of the conditions (1)-(3) is satisfied.

Proof of assertion (1).— Suppose that during evaluation by E the in-

stances of (α, p, j) can be (a, b)-allocated to a global queue but not (a, b+1)-
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allocated to a global queue. Then, by definition, G must have a derivation

tree such as t where gb < da+1 < gb+1. Now three cases are distinguished.

(a) Node y is a descendant of node xk or xk itself for some k ∈ [1, n].—

Then it follows that there is a tuple (Xk, (d, e)) ∈ SIa(α, p, j) such that

set(α, p, j)b < visite(Xk) < set(α, p, j)b+1 in Vp. Hence condition (2) is

satisfied.

(b) Node x is a descendant of node yk or yk itself for some k ∈ [1, n].—

In this case there must be a tuple (Xk, (d, e)) ∈ SIb(α, p, j) such that

visitd(Xk) < set(α, p, j)a+1 < visite(Xk) in Vp. Hence condition (1) is

satisfied.

(c) Nodes x and y are incomparable.— Let z be the root of the smallest tree

containing both x and y, and let q : Y0 → Y1 · · ·Ym be the production

applied at z. Assume that x is a descendant of node zl or zl itself and

y is a descendant of node zk or zk itself for k, l ∈ [1, m]. (Notice that

k = l.) Then there is a tuple (Yk, (d, e)) ∈ SIa(α, p, j) and a tuple

(Yl, (r, s)) ∈ SIb(α, p, j) such that condition (3) is satisfied.

Proof of assertion (2).— Assume that one of the conditions (1)-(3) is

satisfied. Recalling that Gu is reduced, each condition will be considered

separately.

(a) Condition (1) is satisfied.— Then G has a derivation tree such as t

(where y is a descendant of node xk or is xk itself) which is evaluated

by evaluator E in such a way that inequality db < ga+1 < db+1 holds.

Now if da < ga then da < ga < ga+1 < db+1, and if ga < da then

ga < da < da+1 ≤ db < ga+1 < gb+1 and so ga < da < da+1 < gb+1.
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In either case it follows that, by definition, the instances of (α, p, j)

cannot be (a, b + 1)-allocated to a global queue during evaluation by

E.

(b) Condition (2) is satisfied.— Then G has a tree such as t (where y is a

descendant of node xk or is xk itself) which is evaluated by E in such

a way that inequality gb < da+1 < gb+1 holds. In the same way as in

the previous case, it follows that the instances of (α, p, j) cannot be

(a, b + 1)-allocated to a global queue during evaluation by E.

(c) Condition (3) is satisfied.— Let z be a node of t at which production

q is applied. Then G has a tree such as t (where x is a descendant of zl

or is zl itself, and y is a descendant of node zk or is zk itself) which is

evaluated by E in such a way that gb < da+1 < gb+1 holds. Similar to

the previous cases, it follows that the instances of (α, p, j) cannot be

(a, b + 1)-allocated to a global queue during evaluation by E. �

Remark. It is also possible to generalize the definition of subtree information

to cope with the (a, b)-allocation instead of the (a, a+ 1)-allocation as shown

in [10] and [33]. In so doing, lemmas similar to Lemmas 8 and 9 can be stated

for the (a, b)-allocation. The reason for presenting Lemmas 10 and 11 in the

way chosen here, is to show that it is sufficient to compute only the sets

SIi(α, p, j) of an applied occurrence (α, p, j) and still be able to decide all

possible (a, b)-allocations of (α, p, j) to global stacks, queues, and variables.

Moreover, this way avoids the need to introduce new definitions. �

Lemma 10 shows that a multi-use applied occurrence (α, p, j) can be

(a, b)-allocated to a global stack if (α, p, j)a and (α, p, j)b occur within the

same sequence of Vp. Thus, a temporary multi-use applied occurrence can
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always be allocated to a stack without reallocations. For a nontemporary

multi-use applied occurrence (α, p, j), the number of reallocations can be

reduced to n−m in the worst case, where (α, p, j) occurs in Vp(m), and the

occurrence which uses (α, p, j) for the last time occurs in Vp(n).

Example 7. Consider Example 6. From Lemmas 10 and 11 it is inferred

that during evaluation by E all the attribute instances of (α, p2, 1) can be

(0, 2)-allocated to a global stack. The reallocations for (α, p3, 1) cannot be

reduced, as (α, p3, 1) cannot be (0, 2)-allocated to a global stack or a global

queue. �

The following theorem captures a rather immediate but important con-

sequence of the presented lemmas.

Theorem 8. Let E be a simple multi-visit evaluator for an attribute gram-

mar G and (α, p, j) a multi-use applied occurrence of G. It is decidable in

polynomial time whether the instances of (α, p, j) can be (a, b)-allocated to a

global variable, stack, or queue during evaluation by E.

Proof. Observing that the maximum number of tuples in a set SIi(α, p, j) is

limited to |N | ×M2, where M = max {φ(X) |X ∈ N }, the proof is readily

obtained by Lemmas 7, 9, 10, 11, and the analogue of Lemma 1. �

Remark. In [10], Engelfriet and De Jong present necessary and sufficient

conditions to decide, for a given simple multi-visit evaluator E of an attribute

grammar G and a given attribute α of G, whether the instances of α can be

allocated to a global variable or a global stack. It should be clear that,

during evaluation by E, the instances of any applied occurrence of α can be

allocated to a global variable (or a global stack) if the instances of α can
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be allocated to a global variable (or a global stack). The converse, however,

does not hold in general.

Sometimes a less restricted notion of stack is used. It is shown in [20] that

every temporary attribute α can be allocated to a stack during evaluation by

some simple multi-visit evaluator E if E is allowed to read a fixed number of

elements below the top. Since each applied occurrence of α can be allocated

to a conventional stack during evaluation by E, there is no need for this kind

of stack. �
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CHAPTER FIVE

————–

Implementation Aspects

——————−−——————

This chapter explains how the global storage allocation of applied occurrences

can be implemented in a simple multi-visit evaluator so that it satisfies the

demands (1)-(3) listed below.

(1) The evaluation strategy is left unchanged.

(2) The structure remains independent of specific derivation trees.

(3) The applied occurrences that are not used are handled without addi-

tional effort.

It should be emphasized that the proposal described in this chapter is not

the only possible implementation. The reader is challenged to find other,

perhaps more efficient, implementations.

To begin, the notion of coupled attribute occurrences is introduced. Two

attribute occurrences (α, p, j) and (α, q, k) are said to be coupled with respect

to nonterminal X if X = Xj = Yk, where

p : X0 → X1 · · ·Xn and q : Y0 → Y1 · · ·Ym.
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All the occurrences of attribute α which are coupled with respect to X can be

partitioned into two disjoint sets of coupled defined occurrences and coupled

applied occurrences denoted by CDO (α, X) and CAO (α, X), respectively.

The set CDO (α, X) is defined as

{ (α, p, j) | p : X0 → X1 · · ·Xn ∈ P, (α, p, j) ∈ DO(p), Xj = X },

and the set CAO (α, X) as

{ (α, p, j) | p : X0 → X1 · · ·Xn ∈ P, (α, p, j) ∈ AO(p), Xj = X }.

If an applied occurrence (α, p, j) ∈ CAO (α, X) is not coupled with an-

other applied occurrence, that is CAO (α, X) is the singleton set { (α, p, j) },
then its allocation can be performed immediately. To see this, let E be a

simple multi-visit evaluator and α(m) the instance of (α, p, j) connected to

node m in some derivation tree. Suppose that E is visiting node n and

bound to visit node m after the computation of instance α(m). Since the

production applied at node n is known, E knows of which defined occurrence

in CDO (α, X) attribute α(m) is an instance. Further it knows that α(m)

can only be an instance of applied occurrence (α, p, j). Therefore E can im-

mediately allocate the value of α(m) to the appropriate data structure for

(α, p, j) once this instance is computed; that is, before actually visiting node

m. It should be evident how this can be implemented for all the instances of

(α, p, j), in such a way that demands (1)-(3) are satisfied.

If an applied occurrence (α, p, j) ∈ CAO (α, X) is coupled with other

applied occurrences, then the immediate allocation of the value of α(m) by

evaluator E, as described above, is no longer possible. For this allocation

to be made requires that E knows which production is applied at node m
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before it visits this node. So here is a problem: evaluator E must postpone

the allocation of the value of α(m) until it actually visits node m. One way

to do this is by using an uncoupling variable (α, X) for all the occurrences

of attribute α that are coupled with respect to X. This uncoupling variable

is introduced in evaluator E in the following manner (recall Definition 2).

for every (α, q, k) ∈ CDO (α,X)

do replace set (α, q, k) to f((α1, q, k1), . . . , (αm, q, km)) ∈ E(q)

by set (α,X) to f((α1, q, k1), . . . , (αm, q, km))

od;

for every (α, p, j) ∈ CAO (α,X)

do add semantic rule set (α, p, j) to (α,X) to E(p)

od;

Instead of computing instance α(m) while visiting node n, E now computes

the value of uncoupling variable (α, X). On visiting node m, E immediately

allocates the value of (α, X) to the appropriate data structure for the ap-

plied occurrence in CAO (α, X) of which α(m) is an instance (that is applied

occurrence (α, p, j) in this particular case). By now it should be clear how

this can be implemented for all the instances of each applied occurrence in

CAO (α, X). The reader is invited to verify that this approach using uncou-

pling variables satisfies demands (1)-(3).

Notice that the last reference to an uncoupling variable (α, X) is always

made before the next uncoupling variable of α is computed (recalling that

sequential evaluation is assumed). This property implies that all the uncou-
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pling variables of attribute α, that is all the uncoupling variables collected

in set

{ (α, X) | α ∈ A(X), X ∈ N },

can share the same memory. This is quite acceptable, particularly if cache

memory is used for this heavily utilized part of the memory.

Example 8. This example demonstrates the proposed implementation in a

program which implements a simple multi-pass evaluator. It also demon-

strates the occurrence of queues for global storage allocation in attribute

evaluators of attribute grammars with nonlinear underlying context-free

grammars.

Let G be an attribute grammar with nonterminals N = {S, A }, termi-
nals Σ = ∅, start symbol S, and productions

P = { p1 : S → A, p2 : A → ε, p3 : A0 → A1A2 }.

The sets of attributes of each nonterminal are:

I(S) = ∅ I(A) = { i, α }
S(S) = { s } S(A) = { s1, s2 }

The semantic functions defining the defined occurrences

(β, p, k) ∈ ⋃
p∈P DO(p)

are named f(β,p,k). The dependencies among the attribute occurrences are

given by the dependency graphs in Figure 10.

Attribute grammar G is evaluated by a simple multi-pass evaluator E

whose behaviour is specified by the extended visit sequences of Table 6.
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Figure 10. Dependency graphs DG(p1), DG(p2), and DG(p3).

The following program implements evaluator E. In this program, the

values of all attribute instances are assumed to reside at their nodes in order

to simplify the presentation.

procedure S-visit (n : node)

case production applied at n of

p1 : set α(n1) to f(α,p1,1);

call A-visit1 (n1);

set i(n1) to f(i,p1,1)(s1(n1));

call A-visit2 (n1);

set s(n) to f(s,p1,0)(s2(n1))

esac;
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procedure A-visit1 (n : node)

case production applied at n of

p2 : set s1(n) to f(s1,p2,0)

p3 : set α(n1) to f(α,p3,1)(α(n));

call A-visit1 (n1);

set α(n2) to f(α,p3,2)(s1(n1));

call A-visit1 (n2);

set s1(n) to f(s1,p3,0)(s1(n2))

esac;

procedure A-visit2 (n : node)

case production applied at n of

p2 : set s2(n) to f(s2,p2,0)(i(n))

p3 : set i(n1) to f(i,p3,1)(α(n), i(n));

call A-visit2 (n1);

set i(n2) to f(i,p3,2)(s2(n1));

call A-visit2 (n2);

set s2(n) to f(s2,p3,0)(s2(n2))

esac;

For this implementation of E, evaluation of a derivation tree t starts with

execution of procedure call statement

call S-visit (r),

where r is the root of t.

In the following segments, (automatic) changes are presented which must

be made in the program so that the instances of (α, p3, 0) are (0, 1)-allocated
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to a global variable v1 and (1, 2)-allocated to a global queue q1. (Verify that

the reallocation for (α, p3, 0) cannot be omitted by using stacks and queues

which have the possibility to access a stored value more than once. According

to Lemmas 10 and 11 the instances of (α, p3, 0) cannot be (0, 2)-allocated to

a global stack or queue.)

As explained, the coupled applied occurrences (α, p2, 0) and (α, p3, 0) need

to be uncoupled. This is achieved by the introduction of the uncoupling

variable (α, A) in the procedures S-visit and A-visit1 below. A box is placed

around each statement that has been changed.

procedure S-visit (n : node)

case production applied at n of

p1 : set (α,A) to f(α,p1,1);

call A-visit1 (n1);

set i(n1) to f(i,p1,1)(s1(n1));

call A-visit2 (n1);

set s(n) to f(s,p1,0)(s2(n1))

esac;

procedure A-visit1 (n : node)

case production applied at n of

p2 : set α(n) to (α,A);

set s1(n) to f(s1,p2,0)

p3 : set α(n) to (α,A);

set (α,A) to f(α,p3,1)(α(n));

call A-visit1 (n1);

set (α,A) to f(α,p3,2)(s1(n1));
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call A-visit1 (n2);

set s1(n) to f(s1,p3,0)(s1(n2))

esac;

Now that applied occurrence (α, p3, 0) is uncoupled from (α, p2, 0), the

global storage allocation of applied occurrence (α, p3, 0) can be implemented

in the procedures. This is carried out in two stages. Firstly, the notation for

queue operations is given, followed by the (automatic) changes that have to

be made in the procedures using this notation.

Assuming that insertion takes place at the rear end of a queue and that

access and deletion takes place at the front end of a queue, the notation for

queue operations is given by:

(1) append (v, q). — Puts the value v at the rear end of queue q.

(2) front (q). — Returns the value at the front end of queue q.

(3) decrease (q). — Deletes the value at the front end of queue q.

Note that the operations front (q) and decrease (q) are not defined when there

is no value at the front of queue q.

With the notation for queue operations established, the (0, 1)-allocation

of the instances of (α, p3, 0) to v1 and (1, 2)-allocation to q1 is obtained by

altering procedures A-visit1 and A-visit2 as follows.

procedure A-visit1 (n : node)

case production applied at n of

p2 : set s1(n) to f(s1,p2,0)
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p3 : set v1 to (α,A);

set (α,A) to f(α,p3,1)(v1);

append (v1, q1);

call A-visit1 (n1);

set (α,A) to f(α,p3,2)(s1(n1));

call A-visit1 (n2);

set s1(n) to f(s1,p3,0)(s1(n2))

esac;

procedure A-visit2 (n : node)

case production applied at n of

p2 : set s2(n) to f(s2,p2,0)(i(n))

p3 : set i(n1) to f(i,p3,1)(front (q1), i(n));

decrease (q1);

call A-visit2 (n1);

set i(n2) to f(i,p3,2)(s2(n1));

call A-visit2 (n2);

set s2(n) to f(s2,p3,0)(s2(n2))

esac;

Note that in the final segments the attribute instances of (α, p2, 0) are

not stored. These instances, on which no other attribute instances depend,

are assumed not to be delivered as output.

Note further that the reallocation of the attribute instances of (α, p3, 0)

from variable v1 to queue q1 could have been avoided with a less strict notion

of queue. All that it needs to (0, 2)-allocate the instances of (α, p3, 0) to a
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queue is the additional operation rear (q) which returns the value at the rear

end of the queue q. �

These modifications conclude the explanation of how the global storage

allocation of applied occurrences can be implemented in simple multi-visit

evaluators. It should be clear that when the instances of an applied occur-

rence (α, p, j) ∈ CAO (α, X) are (0, 1)-allocated to a global stack, the coupled

applied occurrences in CAO (α, X) can also be uncoupled using that stack

instead of an uncoupling variable (α, X). Such an implementation can be

beneficial since for each attribute instance of (α, p, j) it avoids allocating its

value from uncoupling variable (α, X) to the global stack.
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CHAPTER SIX

————–

Conclusions

——————−−——————

Global storage allocation has been examined for the instances of applied

occurrences in simple multi-visit evaluators. The main results of this exam-

ination are summarized in (1)-(5) below.

(1) Result of Theorem 5. — For simple multi-pass evaluators, it is sufficient

to consider global stacks and queues for the (a, a+1)-allocation of the

instances of applied occurrences.

(2) Result of Theorem 6. — For simple multi-sweep evaluators, it is suffi-

cient to consider the proper subset S of D for the (a, a+ 1)-allocation

of the instances of applied occurrences.

(3) Result of Theorem 7. — For simple multi-visit evaluators, the full set

of basic linear data structures D is needed for the (a, a+ 1)-allocation

of the instances of applied occurrences.

(4) Result of Theorem 8. —For simple multi-visit evaluators, it is decidable

in polynomial time whether the instances of an applied occurrence can

be (a, b)-allocated to a global variable, stack, or queue.
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(5) Corollary of Lemma 10. — For simple multi-visit evaluators, it is suf-

ficient to consider global stacks for the (a, b)-allocation of the instances

of an applied occurrence (α, p, j), where (α, p, j)a and (α, p, j)b occur

within the same subsequence of Vp.

Since it is not possible to use more than one instance of a particular ap-

plied occurrence for the computation of an instance of a defined occurrence,

results (1)-(5) do not depend on the assumption that evaluation functions

f evaluate the actual parameters x1, . . . , xk of a function call f(x1, . . . , xk)

in a sequential order. Hence, results (1)-(5) remain valid when evaluation

functions are used which evaluate the actual parameters of a function call

concurrently.

Figure 11 shows an inclusion diagram. This diagram has an ascending

edge from x to y when the class of attribute evaluators x is a proper subset

of the class of attribute evaluators y. The data structures needed for the

(a, a+ 1)-allocation of the instances of an arbitrary applied occurrence are

shown next to each class of attribute evaluators.

As indicated in Figure 11, the set of data structures needed for the

(a, a+ 1)-allocation of the instances of an arbitrary applied occurrence in-

creases in size with the generality of the class of attribute evaluators. (Note

that for simple 1-pass, 1-sweep, and 1-visit evaluators it is sufficient to con-

sider global stacks for the (a, b)-allocation of the instances of applied occur-

rences. This fact is an immediate consequence of result (5).)

The global storage allocation of the instances of applied occurrences has

been demonstrated on representative attribute grammars. This technique

has not yet been implemented so that real empirical data proving its useful-

ness on practical attribute grammars cannot be given. However, it is possible
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to make some educated guesses using the empirical data of others (recall the

definitions of temporary attributes and temporary applied occurrences on

page 35).

Empirical data found in [12,15,18] shows that approximately 85% of the

attributes in simple multi-visit evaluators are temporary. It also shows that

approximately 60% of these temporary attributes, which can always be allo-

cated to the global stacks of [20], can be allocated to global variables. (Fig-

ures for the allocation of nontemporary attributes are not available because

[12,15,18] did not present such data.)

simple 1-pass
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simple multi-pass
stack, queue
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Figure 11. Inclusion diagram.

Now one of the virtues of attribute grammars is that they abstract from

machine detail like evaluation order and storage allocation. As a result,

there is no essential difference in the way in which the applied occurrences
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of temporary and nontemporary attributes are treated while writing an at-

tribute grammar. In other words, it is conceivable that 85% of the applied

occurrences of nontemporary attributes are temporary, and that 60% of this

quantity can be allocated to global variables (instead of global stacks). Sim-

ilarly, it is conceivable that 60% of the (temporary) applied occurrences of

temporary attributes that could not be allocated to global variables can be

allocated to global variables.

Suppose for the sake of argument (empirical data is not available) that the

applied occurrences are homogeneously distributed over the attributes. Then

it can be calculated that 98% of the applied occurrences might be temporary,

and that 92% of this quantity can be allocated to global variables (instead

of global stacks).

I. Calculation of the percentage of temporary applied occurrences

with respect to the total number of applied occurrences.

Contribution expected from temporary attributes: 100% of 85% = 85%

Contribution expected from nontemporary attributes: 85% of 15% ≈ 13%

Total: 98%

II. Calculation of the percentage of temporary applied occurrences

allocated to global variables with respect to the total number of

temporary applied occurrences.

Contribution expected from temporary attributes

- allocated to global variables: 100% of 60% = 60%

- allocated to global stacks: 60% of 40% = 24%

Contribution expected from nontemporary attributes: 60% of 13% ≈ 8%

Total: 92%

These figures clearly indicate that the approach to globalize the instances

of applied occurrences has significant advantages. Compared to those ap-
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proaches that globalize the instances of attributes the percentage of tem-

porary applied occurrences globalized in simple multi-visit evaluators might

increase from 85 to 98, of which more than 90% (instead of 60%) might be

allocated to global variables.

A word of caution is in place though. First of all, the empirical data found

in [12,15] is based on attribute grammars that were used to define impera-

tive programming languages, and the empirical data found in [18] is based

on attribute grammars that were defined to bootstrap the Fnc-2 attribute

grammar system. It is likely that figures drop when attribute grammars are

used for other purposes. Secondly, it is also possible that the figures are too

optimistic because the specific assumptions made for this calculation do not

hold (the assumption that the applied occurrences are homogeneously dis-

tributed over the attributes looks especially suspicious). Either way, in those

cases the globalization of applied occurrences via global variables, stacks and

queues with possible reallocations gains more importance.

Although some questions concerning the use of storage allocation in at-

tribute evaluators have been answered in this work, other questions remain

and some new questions have arisen. Two particularly interesting questions

which have arisen are:

(1) Is there a proper subset W of S such that, with respect to the (a, a+ 1)-

allocation of the instances of an applied occurrence, the use of data

structures in W would be sufficient for simple multi-waddle evaluators?

(2) Is it decidable for a given simple multi-waddle evaluator whether the

instances of an applied occurrence can be (a, a + 1)-allocated to some

data structure in D if it is not possible to (a, a+ 1)-allocate them to a

global stack or queue?
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The answer to question (2) is still unknown. Question (1), on the other

hand, can be partially answered. By generating all combinations of derivation

trees with four instances of a single-use applied occurrence together with all

possible ways in which a simple multi-waddle evaluator can evaluate them,

it has been found that the define-and-use sequences

1 · 2 · 3 · 4 · 2 · 1 · 4 · 3, 1 · 2 · 3 · 4 · 2 · 4 · 1 · 3,

1 · 2 · 3 · 4 · 3 · 1 · 4 · 2, and 1 · 2 · 3 · 4 · 3 · 4 · 1 · 2

never occur. In other words, there is such a proper subset W of S, but it

is not known how to characterize this set W precisely. (Note that a precise

characterization of W could provide strong evidence concerning the question

whether or not it is decidable in polynomial time that an attribute grammar

is simple m-waddle for a fixed m. This idea is based on the observation

that, for any X ∈ { pass, sweep, visit }, the complexity of deciding that an

attribute grammar is simple m-X for a fixed m is polynomial if and only if

for simple m-X evaluators a finite set of data structures is needed for the

(a, a + 1)-allocation of the instances of an applied occurrence. For further

information, compare Figure 11 and reference [9].)

Lastly, another direction for future research must be mentioned. Using

basic linear data structures, the theoretical possibilities and limitations of

storage allocation in attribute evaluators have been explored. Results ob-

tained during this investigation indicate that it would also be interesting

to extend the scope of this work by making use of these data structures to

explore the theoretical possibilities and limitations of storage allocation in

domains other than attribute grammars.
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POSTSCRIPT

————–

Stacks and Queues for Absolutely Non-circular

Attribute Evaluators

——————−−——————

In the introduction of this dissertation it was stated that improving the

results of Saarinen [32] required a more thorough analysis at evaluator con-

struction time. This was considered to be rather difficult because the order

in which absolutely non-circular attribute evaluators compute attribute in-

stances, determined at evaluator construction time, depended on the deriva-

tion trees to be evaluated. However, advanced understanding of absolutely

non-circular attribute evaluators shows that this dependency does not add

that much complexity.

This postscript sets out to establish necessary and sufficient conditions

to decide for an absolutely non-circular attribute evaluators whether the in-

stances of an applied occurrence can be (a, b)-allocated to a global variable,

stack, or queue. Definitions of new concepts and notations are kept to a

minimum by adapting them from simple multi-visit evaluators as much as

possible. Again a representative example is given to illustrate the concepts
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and notations introduced. Implementation details, however, are omitted be-

cause they are similar to those for simple multi-visit evaluators.

Absolutely non-circular attribute evaluators

An absolutely non-circular attribute evaluator for an attribute grammar

G is an attribute evaluator where the evaluation strategy is completely de-

termined by a family F (X) of totally ordered partitions over the attributes

A(X) of each X ∈ N . It is a program that selects for each node n labelled

by X a partition A1(X), . . . , Am(X) of the family F (X) so that, for each

i ∈ [1, m], all attribute instances of Ai(X) at n are computed during the i-th

visit to the subtree of n.

Let π ∈ F (X) denote that π is a partition of F (X), let |π| denote the

number of parts in partition π, and let visiti(X, π) denote the i-th visit to a

node labelled X ∈ N with selected partition π ∈ F (X).

Definition 14. An absolutely non-circular attribute evaluator E for an

attribute grammar G consists of components (1)-(3) where:

(1) For each X ∈ N , a family F (X) of ordered partitions over A(X). Each

partition π ∈ F (X) is necessary, that is, there must be at least one

derivation tree in which π is selected for a node labelled by X. Between

the attributes of each set Ai(X) of a partition A1(X), . . . , Am(X) in

F (X) a particular computation order is assumed.

(2) For each p : X0 → X1 · · ·Xn ∈ P , each π ∈ F (X0), and each i ∈ [1, |π|],
a sequence

vp,π(i) ∈ { visitj(Xk, π̃) | j ∈ [1, |π̃|], π̃ ∈ F (Xk), k ∈ [1, n] }∗
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describing, for every node x at which production p is applied and par-

tition π is selected, the sequence of visits that must be made to the

children of x during the i-th visit to x. The sequence vp,π(1) · · · vp,π(|π|)
is such that sequence

visit1(Xk, π̃) · · · visit|π̃|(Xk, π̃)

with k ∈ [1, n] and π̃ ∈ F (Xk) is obtained when all elements in the set

{ visitj(Xl, π̄) | j ∈ [1, |π̄|], π̄ ∈ F (Xl), l ∈ [1, n], l �= k } are deleted.

(3) For each production p ∈ P , a set of evaluation rules E(p) as per

Definition 2(4). �

It will be clear from this definition that simple multi-visit evaluators

are absolutely non-circular attribute evaluators where the family of totally

ordered partitions over the attributes A(X) of each X ∈ N consists of a

single partition. Similar to these evaluators, the behaviour of absolutely

non-circular attribute evaluators can be expressed by a set of extended visit-

sequences. This set of extended visit-sequences, however, has one extended

visit-sequence for each production p : X0 → X1 · · ·Xn ∈ P and each partition

π ∈ F (X0).

Let Ip,π,j(Xi) be the set { (α, p, i) | α ∈ Aj(Xi) ∩ I(Xi) } and Sp,π,j(Xi)

be the set { (α, p, i) | α ∈ Aj(Xi) ∩ S(Xi) } for all p ∈ P , π ∈ F (Xi),

j ∈ [1, m], and i ∈ [0, n], where p is assumed to be X0 → X1 · · ·Xn and

π = A1(Xi), . . . , Am(Xi).

Definition 15. The extended visit-sequence of p : X0 → X1 · · ·Xn ∈ P

and π ∈ F (X0) is the sequence Vp,π = Vp,π(1) · · ·Vp,π(|π|) where, for every

i ∈ [1, |π|], sequence Vp,π(i) equals
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〈Ip,π,i(X0), Ip,πj1
,m1(Xj1), visitm1(Xj1, πj1), Sp,πj1

,m1(Xj1), . . .

. . . , Ip,πjr ,mr(Xjr), visitmr(Xjr , πjr), Sp,πjr ,mr(Xjr), Sp,π,i(X0)〉,

if vp,π(i) = visitm1(Xj1, πj1)visitm2(Xj2, πj2) · · · visitmr (Xjr , πjr). �

The notation set(α, p, j) is used to denote the (unique) set in Vp,π that

contains attribute occurrence (α, p, j). For elements a and b in Vp,π, the

expression “a < b in Vp,π” will be written if a occurs before b in Vp,π.

Example 9. Let G be an attribute grammar with start symbol S, nonter-

minals N = {S, A }, terminals Σ = ∅, and productions P = { p1 : S → A,

p2 : S → A, p3 : A0 → A1A2, p4 : A→ ε, p5 : A→ ε }. The sets of attributes

of each nonterminal are:

I(S) = ∅ I(A) = { δ, i, }
S(S) = { s } S(A) = { s1, s2 }

Figure 12 shows the relevant aspects of sets R(p1), R(p2), R(p3), R(p4), and

R(p5) by means of their dependency graphs.

Attribute grammar G is evaluated by an absolutely non-circular attribute

evaluator E, with F (S) consisting of partition πS = { s } and F (A) of parti-

tions πA = { δ, s1 }, { i, s2 } and π̃A = { δ, i, s1, s2 }. The behaviour of E is

given by means of the extended visit sequences of Table 7 (where the nota-

tional convention for multiple occurrences of a nonterminal applies so that,

for instance, visit1(A1, πA) and visit1(A2, πA) are different visits).

From these extended visit-sequences it should be clear that E traverses

the derivation tree in a preorder depth-first manner (visit root, then leftmost
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Figure 12. Dependency graphs DG(p1), DG(p2), DG(p3),

DG(p4), and DG(p5).

subtree to rightmost subtree). When production p1 is applied at the root,

all the instances of attributes δ and s1 are evaluated in the first traversal,

and all the instances of i and s2 in the second traversal. When production

p2 is applied at the root, all the instances of attributes δ, i, s1, and s2 are

evaluated in one traversal. �
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Other concepts and notations defined for simple multi-visit evaluators like

evaluation sequence, existence of an attribute instance, and (a, b)-allocation

can be simply generalized to absolutely non-circular attribute evaluators.

Assuming that it does not give cause to confusion, these concepts and no-

tations can be freely used for absolutely non-circular attribute evaluators

without formally defining them.

Remark. The problem whether an attribute grammar can be evaluated by

an absolutely non-circular attribute evaluators is decidable in polynomial

time. The size of absolutely non-circular attribute evaluators, however, can

be exponential in the size of the grammar. (See [3,5,6,7,11,17,21,22,29,32]

for more information on absolutely non-circular attribute evaluators.)

Some implementations of absolutely non-circular attribute evaluators (for

instance [17,21,32]) do not evaluate all attribute instances in the derivation

tree. These implementations try to evaluate only those attribute instances

that contribute to the computation of the attribute instances at the root.

Aside from the fact that it is conceivable that other attribute instances have

to be delivered as output than those at the root, it will be clear that such

implementations are not covered by the notion of absolutely non-circular

attribute evaluators as defined here. �

Global storage allocation of applied occurrences

Similar to simple multi-visit evaluators, the concept of subtree informa-

tion is defined for absolutely non-circular attribute evaluators. Consider an

absolutely non-circular attribute evaluator E for an attribute grammar G

that has an applied occurrence (α, p, j). Let t be a derivation tree of G and

let n be a node of t. Assume (β, p, k) = (α, p, j)i and (γ, p, l) = (α, p, j)i+1.
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Definition 16. The subtree information SIi(α, p, j) for the (i, i + 1)-allo-

cation of the instances of (α, p, j) is a set of tuples (X, π, (a, b)) with X ∈ N ,

π ∈ F (X), a, b ∈ [1, |π|], and a ≤ b. A tuple (X, π, (a, b)) ∈ SIi(α, p, j)

when there is a subtree t(n), n labelled by X, that has a node m at which

production p is applied. This subtree is evaluated by E (as part of t) in such

a way that partition π is selected for node n while the instance of (α, p, j)i at

node mk is computed during the a-th visit to n and the instance of (α, p, j)i+1

at node ml is computed during the b-th visit to n. �

The constructability of set SIi(α, p, j) is shown by the following lemma

using the extended visit sequences of evaluator E. For all elements a in

Vp,π, let a ∈+ Vp,π(n) denote that a occurs in sequence Vp,π(n). For all

sets Ip,π,n(Xm), Sp,π,n(Xm) ∈+ Vp,π(n), let (δ, p,m) ∈∗ Vp,π(n) denote that

(δ, p,m) ∈ Ip,π,n(Xm) or (δ, p,m) ∈ Sp,π,n(Xm).

Lemma 12. SIi(α, p, j) = SIi
′(α, p, j), where SIi

′(α, p, j) is defined by steps

(1)-(3) as follows.

(1) Basis. — If (α, p, j)i ∈∗ Vp,π(a) and (α, p, j)i+1 ∈∗ Vp,π(b) for some

π ∈ F (X0), then tuple (X0, π, (a, b)) ∈ SIi′(α, p, j) where p is assumed

to be X0 → X1 · · ·Xn.

(2) Projection. — If (X, π̃, (r, s)) ∈ SIi′(α, p, j) and there is a production

q : Y0 → Y1 · · ·Ym with nonterminal Yk = X for some k ∈ [1, m] such

that visitr(Yk, π̃) ∈+ Vq,π(a) and visits(Yk, π̃) ∈+ Vq,π(b) holds for a

π ∈ F (Y0), then tuple (Y0, π, (a, b)) ∈ SIi′(α, p, j).

(3) Closure. — Nothing is in SIi
′(α, p, j) except those tuples which are in

SIi
′(α, p, j) by applying the basis step (1) and the projection step (2)

on a finite number of occasions.
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Proof. Immediate by adjusting the proof of Lemma 7 and the assumption

that, for all X ∈ N , each π ∈ F (X) is necessary. �

Example 10. Referring to Example 9, by the basis step and the projection

step of Lemma 12, it is found that

SI0(δ, p3, 0) = SI1(δ, p3, 0) = SI0(δ, p4, 0)

= { (S, πS, (1, 1)), (A, πA, (1, 1)), (A, π̃A, (1, 1)) }

SI0(δ, p5, 0) = { (S, πS, (1, 1)), (A, πA, (1, 2)), (A, π̃A, (1, 1)) } �

The next lemma uses the subtree information to decide whether an

absolutely non-circular attribute evaluator can (a, b)-allocate the attribute

instances of an applied occurrence to a global stack.

Lemma 13. Let E be an absolutely non-circular attribute evaluator for an

attribute grammar G and let p : X0 → X1 · · ·Xn ∈ P with (α, p, j) ∈ AO(p).

The attribute instances of (α, p, j) cannot be (a, b)-allocated to a global stack

during evaluation by E if and only if at least one of the following conditions

is satisfied.

(1) There is a tuple (Xk, π̃, (d, e)) ∈ ⋃b−1
i=a SIi(α, p, j) for some k ∈ [1, n]

such that for some i ∈ [a, b− 1] and π ∈ F (X0),

set(α, p, j)i < visitd(Xk, π̃) < set(α, p, j)i+1 < visite(Xk, π̃) in Vp,π.

(2) There is a tuple (Xk, π̃, (d, e)) ∈ ⋃b−1
i=a SIi(α, p, j) for some k ∈ [1, n]

such that for some i ∈ [a, b− 1] and π ∈ F (X0),

visitd(Xk, π̃) < set(α, p, j)i < visite(Xk, π̃) < set(α, p, j)i+1 in Vp,π.
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(3) There is a production q : Y0 → Y1 · · ·Ym ∈ P , and tuples (Yk, π̃, (d, e)),

(Yl, π̄, (r, s)) ∈
⋃b−1

i=a SIi(α, p, j) for some distinct k, l ∈ [1, m] such that

for some π ∈ F (Y0),

visitd(Yk, π̃) < visitr(Yl, π̄) < visite(Yk, π̃) < visits(Yl, π̄) in Vq,π. �

In order to prove this lemma it is necessary to know what it means that the

instances of an applied occurrence (α, p, j) can be (a, b)-allocated to a global

stack during evaluation by an absolutely non-circular attribute evaluator

E. Although it requires a straightforward modification of Definition 7, it is

formalized here to avoid confusion:

A group A of attribute instances of (α, p, j) can be (a, b)-allocated

to a global stack during evaluation by E if for all instances γ ∈ A,

with ξ(γ) = 〈g1, . . . , gu〉, the following holds: there is no instance

δ ∈ A, with ξ(δ) = 〈d1, . . . , du〉, such that ga < da < gi < db for

some i ∈ [a+ 1, b].

Proof of Lemma 13. Let t be a derivation tree with x and y denoting two of

its nodes at which production p is applied. The instance of (α, p, j) at node

xj is denoted by γ and the instance of (α, p, j) at node yj is denoted by δ,

where ξ(γ) = 〈g0, . . . gu〉 and ξ(δ) = 〈d0, . . . , du〉.
Firstly it will be shown that the instances of (α, p, j) cannot be (a, b)-

allocated to a global stack during evaluation by E if one of the conditions

(1)-(3) is satisfied. Each condition is treated separately (recall that Gu is

reduced and that, for all X ∈ N , each π ∈ F (X) is necessary).

(a) Condition (1) is satisfied. — Then G has a derivation tree like t (where

y is a descendant of xk or is xk itself) which is evaluated by E in such
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a way that π is selected at x and that gv < dw < gv+1 < dw+1 for some

v, w ∈ [a, b− 1]. Now if ga < da then ga < da ≤ dw < gv+1 < dw+1 ≤ db

so that ga < da < gv+1 < db. If on the other hand da < ga then

da < ga ≤ gv < dw < gv+1 < gb so that da < ga < dw < gb. In

both cases it is evident from the definition above that the instances of

(α, p, j) cannot be (a, b)-allocated to a global stack during evaluation

by E.

(b) Condition (2) is satisfied.— Then G has a derivation tree like t (where

y is a descendant of xk or is xk itself) which is evaluated by E in such

a way that π is selected at x and that dw < gv < dw+1 < gv+1 for some

v, w ∈ [a, b − 1]. In the same way as in the previous case, it follows

that the instances of (α, p, j) cannot be (a, b)-allocated to a global stack

during evaluation by E.

(c) Condition (3) is satisfied.— Let z be a node of t at which production

q is applied. Then G has a tree like t (where x is a descendant of

node zk or is zk itself, and y is a descendant of node zl or is zl itself)

which is evaluated by E in such a way that π is selected at z and

that gv < dw < gv+1 < dw+1 for some v, w ∈ [a, b − 1]. Similar to

the first case, it can be shown that the instances of (α, p, j) cannot be

(a, b)-allocated to a global stack during evaluation by E.

Secondly, it will be shown that at least one of the conditions (1)-(3) is

satisfied if the instances of (α, p, j) cannot be (a, b)-allocated to a global stack

during evaluation by E. Therefore, assume that the instances of (α, p, j)

cannot be (a, b)-allocated to a global stack during evaluation by E. Then G

must have a derivation tree like t which is evaluated by E in such a way that
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ga < da < gi < db for some i ∈ [a + 1, b] (compare the definition on page

120). Hence there exists a w ∈ [a, b− 1] such that ga < dw < gi < dw+1, and

so there exists a v ∈ [a, b− 1] such that gv < dw < gv+1 < dw+1. Three cases

are distinguished.

(a) Node y is a descendant of node xk or is xk itself for some k ∈ [1, n].—

Let π ∈ F (X0) be the partition selected by evaluator E for node x.

Then there must be a tuple (Xk, π̃, (d, e)) in set SIw(α, p, j) such that

set(α, p, j)v < visitd(Xk, π̃) < set(α, p, j)v+1 < visite(Xk, π̃) in Vp,π.

This implies that condition (1) is satisfied.

(b) Node x is a descendant of yk or is yk itself for some k ∈ [1, n].—

Let π ∈ F (X0) be the partition selected by evaluator E for node y.

Then there must be a tuple (Xk, π̃, (d, e)) in set SIv(α, p, j) such that

visitd(Xk, π̃) < set(α, p, j)w < visite(Xk, π̃) < set(α, p, j)w+1 in Vp,π.

This implies that condition (2) is satisfied.

(c) Nodes x and y are incomparable.— Let z be the root of the smallest

tree of t containing both x and y, let q : Y0 → Y1Y2 · · ·Ym be the

production applied at z, and let π ∈ F (Y0) be the selected partition

at node z. Assume x is a descendant of zk or zk itself and y a de-

scendant of zl or zl itself, for distinct k, l ∈ [1, m]. Then there are two

tuples (Yk, π̃, (d, e)) and (Yl, π̄, (r, s)) in set
⋃b−1

i=a SIi(α, p, j) such that

visitd(Yk, π̃) < visitr(Yl, π̄) < visite(Yk, π̃) < visits(Yl, π̄) in Vq,π. This

implies that condition (3) is satisfied. �

The following two lemmas provide necessary and sufficient conditions

to decide whether an absolutely non-circular attribute evaluator can (a, b)-

allocate the attribute instances of an applied occurrence to a global queue.
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The proof of Lemma 14 is similar to that of Lemma 13 and the proof of

Lemma 15 is directly obtained by adjusting the proof of Lemma 11 using the

fact that, for all X ∈ N , each π ∈ F (X) is necessary.

Lemma 14. Let E be an absolutely non-circular attribute evaluator for an

attribute grammar G and let p : X0 → X1 · · ·Xn ∈ P with (α, p, j) ∈ AO(p).

The attribute instances of (α, p, j) cannot be (a, a + 1)-allocated to a global

queue during evaluation by E if and only if at least one of the following

conditions is satisfied.

(1) There exists a tuple (Xk, π̃, (d, e)) ∈ SIa(α, p, j) for some k ∈ [1, n]

such that for some π ∈ F (X0),

set(α, p, j)a < visitd(Xk, π̃) and visite(Xk, π̃) < set(α, p, j)a+1 in Vp,π.

(2) There exists a tuple (Xk, π̃, (d, e)) ∈ SIa(α, p, j) for some k ∈ [1, n]

such that for some π ∈ F (X0),

visitd(Xk, π̃) < set(α, p, j)a and set(α, p, j)a+1 < visite(Xk, π̃) in Vp,π.

(3) There exist a production q : Y0 → Y1 · · ·Ym, and tuples (Yk, π̃, (d, e)),

(Yl, π̄, (r, s)) ∈ SIa(α, p, j) for some distinct k, l ∈ [1, m] such that for

some π ∈ F (Y0),

visitd(Yk, π̃) < visitr(Yl, π̄) and visits(Yl, π̄) < visite(Yk, π̃) in Vq,π. �

Lemma 15. Let E be an absolutely non-circular attribute evaluator for an

attribute grammar G and let p : X0 → X1 · · ·Xn ∈ P with (α, p, j) ∈ AO(p).

The attribute instances of (α, p, j) can be (a, b)-allocated to a global queue

during evaluation by E if and only if E can (a, b− 1)-allocate them to a

global queue and none of the following conditions is satisfied.
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(1) There exists a tuple (Xk, π̃, (d, e)) in SIb−1(α, p, j) for some k ∈ [1, n]

such that for some π ∈ F (X0),

visitd(Xk, π̃) < set(α, p, j)a+1 < visite(Xk, π̃) in Vp,π.

(2) There exists a tuple (Xk, π̃, (d, e)) in SIa(α, p, j) for some k ∈ [1, n]

such that for some π ∈ F (X0),

set(α, p, j)b−1 < visite(Xk, π̃) < set(α, p, j)b in Vp,π.

(3) There exist a production q : Y0 → Y1 · · ·Ym and tuples (Yk, π̃, (d, e)) in

SIa(α, p, j) and (Yl, π̄, (r, s)) in SIb−1(α, p, j) for distinct k, l ∈ [1, m]

such that for some π ∈ F (Y0),

visitr(Yl, π̄) < visite(Yk, π̃) < visits(Yl, π̄) in Vq,π. �

From Lemma 13 it can be inferred that an applied occurrence (α, p, j) of

a production p : X0 → X1 · · ·Xk can be (a, b)-allocated to a global stack if,

for every partition π ∈ F (X0), (α, p, j)a and (α, p, j)b occur within the same

subsequence of Vp,π. This means that, for each sequence Vp,π, the number of

reallocations of an applied occurrence (α, p, j) can be reduced to n −m in

the worst case, where (α, p, j) occurs in Vp,π(m), and the occurrence which

uses (α, p, j) for the last time occurs in Vp,π(n).

The main result of this postscript is the following theorem.

Theorem 9. Let E be an absolutely non-circular attribute evaluator for an

attribute grammar G and (α, p, j) an applied occurrence of G. It is decidable

in exponential time whether the instances of (α, p, j) can be (a, b)-allocated

to a global variable, stack, or queue during evaluation by E.
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Proof. The number of unordered partitions of a set of n ≥ 0 elements into

k ∈ [0, n] disjoint nonempty subsets is given by the Stirling number of the

second kind S(n, k); see also [24] for more information. Hence, for all X ∈ N ,

there are k!S(n, k) ordered partitions of A(X) into k disjoint nonempty sub-

sets, where n = |A(X)|, so that there can be maximal
∑n

k=0 k!S(n, k) ordered

partitions in F (X). This effectively means that there can be an exponential

number of tuples in a set SIi(α, p, j) since

SIi(α, p, j) ⊆ N × Π × [1, K] × [1, K],

where Π = { π |π ∈ F (X), X ∈ N } and K = max{ |π| |π ∈ F (X), X ∈ N }.

Using this observation the proof is readily obtained by Lemmas 13-15 and

the analogue of Lemma 1. �

Applied
(0,1)-Allocation (0,2)-Allocation

Occurrence

(δ, p3, 0) global stack

(δ, p4, 0) global variable

(δ, p5, 0) global queue

Table 8. Allocation of applied occurrences (δ, p3, 0),

(δ, p4, 0), and (δ, p5, 0).

Example 11. Consider Examples 9 and 10. By means of Lemmas 13-15

and the analogue of Lemma 1 the allocations of Table 8 can be found for the

instances of (δ, p3, 0), (δ, p4, 0), and (δ, p5, 0) during evaluation by E. �

In what follows comparisons will be made with the storage allocation

techniques of Saarinen [32] and Katayama [21]. So that their absolutely non-

circular attribute evaluators need to compute all attribute instances in the
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derivation tree it is assumed that the attribute grammars under consideration

are such that all attribute instances in their derivation trees contribute to

the computation of the attribute instances of the root. This assumption can

be made without loss of generality (by introducing artificial dependencies)

and has the advantage that the concept of absolutely non-circular attribute

evaluator (notations included) as defined in this postscript can be used with

the evaluators of Saarinen and Katayama.

Comparison 1. Considering the allocation of the applied occurrences of each

visit sequence Vp,π in isolation, Saarinen [32] allocated the temporary applied

occurrences of each Vp,π to a global stack (at least that was his intention so

far as this allocation caused no problems with the other paths in the history

graph of production p that might part or merge with the path described by

Vp,π). An applied occurrence (α, p, j) is temporary in sequence Vp,π when

(α, p, j) and each defined occurrence (β, p, k) directly depending on (α, p, j)

occur within the same subsequence of Vp,π.

Here allocation of an applied occurrence (α, p, j) is decided so that it

is applicable for all visit sequences Vp,π. An applied occurrence (α, p, j) is

therefore always allocated to a global stack when it is temporary for all Vp,π

(see also Lemma 13). Since the instances of (α, p, j) in a sequence Vp,π are

a subset of all instances of (α, p, j) it is conceivable that Saarinen is able to

allocate (α, p, j) to a global stack for a sequence Vp,π while this is not possible

for all extended visit-sequences of p.

Specializing the definitions and lemmas in this postscript so that allo-

cation is decided for the instances of an applied occurrence (α, p, j) in a

particular visit sequence Vp,π is straightforward, but its implementation is

not. To create nodes where the instances of (α, p, j) can be stored that can-
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not be allocated elsewhere, it must be known at derivation tree construction

time which partitions the evaluator will select for the nodes. This is no prob-

lem for evaluators where the partitions must be selected and stored in the

nodes in a separate stage (like Saarinen’s evaluator) but it requires extra

compilation time when this is not the case. �

Comparison 2. In [21], where absolutely non-circular attribute evaluators are

implemented by mutually recursive procedures, Katayama utilized the stan-

dard procedure mechanism of programming languages to store the instances

of the attributes in the stack frames of the procedure stack. Attributes

α whose applied occurrences (α, p, j) are temporary for all extended visit-

sequences of p are declared as local variables in the procedures Qp,s so that

their instances are stored on the procedure stack without explicit stack ma-

nipulations. Although these instances can also be allocated to global stacks

(see also Lemma 13), this solution may be more efficient since many machines

offer hardware support for procedure mechanisms.

Katayama also suggests to store the instances of other attributes on the

procedure stack, but does not provide much details (the procedure construc-

tion of [21, Section 6.1] does not apply for them). Aside from this omission,

he also makes a mistake to claim [21, page 363] that the maximum length

of the procedure stack is proportional to the height of the derivation tree.

When every attribute instance is allocated to the procedure stack, which is

what he proposes, the maximum length of the procedure stack can be expo-

nential to the height of the derivation tree. Consider, for instance, the space

requirements for applied occurrence (δ, p5, 0) of Example 9. When produc-

tion p1 is applied at the root of a derivation tree t, the number of instances

of (δ, p5, 0) that needs to be stored between the first and the second traversal
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of E to t can be exponential in the height of t. Hence, assuming that it is

possible, allocating the instances of (δ, p5, 0) to the procedure stack implies

that the maximum length of the procedure stack is exponential in the height

of the derivation tree. �

Conclusions

It is decidable in exponential time whether an absolutely non-circular

attribute evaluator can (a, b)-allocate the instances of an applied occurrence

to a global variable, stack, or queue. The exponential factor in the complexity

of this decidability problem is the number of ordered partitions in the set Π

as defined in the proof of Theorem 9, so that it remains to be seen whether

Lemmas 13, 14, and 15 have practical significance.

The remark that was made with respect to evaluation functions in simple

multi-visit evaluators (see page 106) also holds for absolutely non-circular

evaluators. Hence, Lemmas 13, 14, and 15 can also be used when evaluation

functions are considered which evaluate the actual parameters of a function

call concurrently.

Finally, a word on the data structures that are needed for the (a, a+ 1)-

allocation of the instances of applied occurrences in absolutely non-circular

attribute evaluators. For these evaluators it is also necessary and sufficient to

consider the set of basic linear data structures D for the (a, a+1)-allocation of

the instances of applied occurrences. The necessity follows from Theorem 7

since simple multi-visit evaluators are a proper subset of absolutely non-

circular evaluators, and the sufficiency follows from similar arguments as

given for simple multi-visit evaluators on page 35.
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27. Räihä, K.-J.: “Dynamic allocation of space for attribute instances in

multi-pass evaluators of attribute grammars”, ACM SIGPLAN Notices

14(8) (1979), 26-38.
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#x(α) — number of occurrences of sym-

bol x in sequence α . . . . . . . . . . . . . . . . 36
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